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! Ada programs can be regarded as ensembles of machines, one per program unit
(module), which in turn may be mapped directly into corresponding VLSI :
structures on one or more chips with interconnecting (packet switched or

other) communication nets. .
. ]

Many of the transformation steps, when performed manually, when optimization
. is not everywhere crucial, and when care is taken to constrain somewhat the
. structure of the source Ada program, appear to be understood.

The research reported here is part of a five-year plan, the first year of

| which focuses on "proving" the concepts through a realistic demonstration of
methodology for a specific example Ada program (a silicon representation of
part or all of the DoD Standard Internet Protocol, IP, initially expressed in
Lda.) ‘Since the mapping from Ada to VLSI is seen as a multistep, iterative
procedure, considerable effort for the following four and a half years will be
the invested in the development and tailoring of intermediate languages and
their bridging algorithms (compilers), as needed, and in the development of
objective criteria for their use with feedback loops for jterative design.

Implicit in these objectives is the development of a set of hardware
structuring paradigms (rewrite rules) whose application can ensure that
transformation steps between levels of abstraction in the design process are
well structured in order to preserve the integrity and, where possible, the ‘

clarity of the original Ada specification. Some paradigms, but of course not
all, lead to highly efficient implementations.
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Abstract

This report summarizes the second six months of work of the coordinated research project,
"Transformation of Ada Programs into Silicon." (The mein objectives of this project were
outlined and then intreduced in depth in the preceding semiannual report.) In the past seven
months, work has advanced in three main areas. Expanded summaries of work in these areas
(and subareas) are presented:

1. Work on the principal case study of this project: Converting the DoD Internet
Protocol to silicon. The full Protocol has beer deccrnpesed into three main parts.
The part that handles outbound datagrams has beer fully specified ir Ada and
an interesting part of that code has been transformed into an NMO0S circuit
composite represented in PPI, (Path Programmable L ogic).

2. A tranformation system is being implemented to map Ada program units into

intermediate forms in syntactically correct Ada. These intermediate forms are
* suitable for irput to the transformaticn system (A SSASSIN) that automates the
production of the asynchronous control componerts ¢i the PPL circuit composites.
A theory for synthesizing dircuits from system specifications that are more
r abstract than Ada is also reported.

%)

Research and Developmert cn the desigr, fabrication, and application of PPL
(Path Programmable Logic) drcuit arrays is reported

a. The ASSA SSIN system which transforms state graphs of state machines
expressed in textual form to self-timed PPL programs and compesites is
operational.

I' b. Cempletion of a PPL simulator (ASYLIM) has been incorporated into the
PPL desigrn system.

c. Design and composite layout of three different PPL test circuits were sent
out for fabricaton. The circuits will be used to check a wide variety of
’ PPL cells and supporting crcuitry.

d. A design techrique fer ICs representing self-timed stored state machines
and dete path components using the PPL cell set has been developed. The
results of the research have produced new PPL macrc cells which
augment the set of available cells.
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1.S

This report summarizes the second six months of work of the coordinated research project,
"Transformation of Ada Programs into Silicon.” Project objectives span a broad and ambitious
spectrum (broader than the already broad title implies), hence the term coordinated; this
refers tc the fact that, on the one hand, all research within the project is closely related, but
that the overall project success is not predicated on clese coupling of individual subproject
results. The main objectives of this project were outlined and then introduced in depth in the
preceding semi-ennual report [19]). Th2y are repeated here in more brief and in a somewhat
updated form:

1. Develop elements of a tranformation methodclogy for converting Ada programs
or their parts, into VLSI systems. This research includes identifying a sufficient
set of transformation rules for mapping program specifications through

* Successive levels of representation, from A da or related abstract specifications, to
integrated circuits.

2. Demenstrate the methodology developed in 1 by manuelly applying it to a non-
trivial example: transforming an A da—encoded representation of the DoD
Standard Internet Protocol [20] (or a significant subset thereof) intc NMOS
circuitry.

3. Work toward a theory fer idertifying substructures within Ada programs for
which the transformation methodology is pragmatically attractive.

4. Develop specifications for a set of software tools for use in automating the
transformation methedcology developed ir 1.

S. Develop a2 methodology for testing integrate circuits representing Ada program
units and for integrating such circuits intc a larger system.

In the past seven months, our work has advanced in three main areas and in several
subareas listed below. Expanded summaries of work in these areas are presented in
succeedirng secticns of this report. '

1. W ork on the principal case study of this project: Converting the DoD Internet
Protocol to silicon. The full Protocol has been deccmposed intc three main
parts (18, 18] The part that handies outbound datagrams has beer fully
specified i Ada [14] and part of that code has beer transformed intc an NM0OS
dreuit composite [6],

2. Implemerting a tranformatiorn system to map Ada program units into
irtermediate forms in syntactically correct Ada. These intermediate forms
represerit <state machine, data path> pairs suitable for irput te another
transformation system that autcmates the production of circuit composites [24].

a.Development of a theory for syrthesizirg circuits frem system
specificaticr.& that are :nore abstract than Ada, e.g., axicmatic algebraic
specifications or from A da augmented with ANN A -like specifications that
alsc al)ow specificatior of temporal properties. [12, 29, 25, 26]

3. Research and Developmert on the desigr, fabricaticn, and application: of PPL
(Path Programmable Logic) circuit arrays.

a. Completicr. of the transformaticr system called A SSASSIN, reported in
detail elsewlere (7], which transforms state graphs cf state machines
expressed ir. textual form to self-timed PPL Programs and compcsites.

b. Desigrn and ccrmpesite layout of three different PPL ‘est circuits called
UU20, UU21, ard UU23. UUZ20 is used to check the read—enable flip—
flop, the write-enable flip—flop, the asynchronous—clear flip~flcp, row
pass—transistors, and flip—flep pull-up cells. UU21 checks the Set/Reset
flip-flop, the .twc—wire latch, the inverter cells, the column pass—
transistor, and the S, R,1, and 0 cells. UUZ23 checks the inptt and output
pad cells. In addition, a test circuit containing several differert oscillators
and counters has been included for determining performance.

UU20 and UUZ21 were sent to MOSIS for the June 4 rur, and in July we
were informed that, due to some mask problems, rone cf the circuits were
completed. W e are still waiting for these parts. In September we decided
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to process all three test drcuits in our own (HED CO) laboratory.
Problems with mask meking equipment have caused delays, however,
UU20 and UU21 are expected out of the process line in late November or
early December. UU23 should also be processed in D eceinber.

. Completion of @ PPL simulator called ASYLIM which has been under

development for the past year. (The work was sponsored primarily by a
commercial company. The simulator was inccrporated into the PPL
design system for use in this project. The mair characteristics of this
simulator are outlined in Secticn 4 of this report.

.Development a design technique fcr ICs representing self-timed stored

state machines and data path components using the PPL cell set. (The
work was sponsored by a private company.) These techniques have been
primarily directed at the design of circuits using a ccnventional single—
rail Four Cycle signalling protoccl. The results of the research have
produced new PPL macro cells w hich augment the set of avaiiable cells

page 2
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2. Converting the DoD Internet Protocol to Silicon.
by
Elliott I. Organick and Gary Lindstrom

As mentioned previously [19), our design of the Protocol is based on a decomposition into
three submodules: INM _ OUT dealing with traffic outbound cn a given local net, INM . IN
. similar]y hardlirg inbound traffic. and IN M _ SRV tying them tcgether and interfacing to the
i Hoest(s). We envision cne INM _IN and INM_ OUT pair of submodules for each local net

interface, but only one INM . SKV submodule per Intercet M odule (INM).

We are following the five-devel scftware development and testing plan discussed in the
preceding report. The levels correspond to IP applications in increasingly generalized settings.
The plar. stipulates testing as each level is reached, rather than as an epilog to the
development plan. Testing is to be conducted at several levels, from the physical
characteristics of the circuits themselves to the (A da) semantic bshavior of the submodules

that have been converted to circuits.

_' After designing (specifying) the interfaces between the subraodules [13, 10), we then
selected the INM _ OUT (sub)module as the first or:e to be converted to circuitry. W ork toward
this objective in the past sever months has beer. rapid in some respects and slow in others.

The specific and sigrificar.t accomplishments have been as follows:

l 1. W e have coded the complete INM _ OUT submodule in Ada and have succeeded
in compiling most of it for execution on the Intel iAPX 432 system except for
statements and declarations associated with uses cf the Ada rendezvous
censtruct.

[As later versiors of the Intel ccmpiler beccme available, we expect not cnly to be
able to compile the full module using rendezvous syntax and semantics, but to
exectte it in this mode as well. In the meantime we are working w ith a version
of the code that simulates each rendezvous via Send/Receive primitives
instantiated through use of the A da generic package mechanism. ]

2. The INM_ OUT submodule is an Ade package named INM_ OUT._ Module; it
‘ cortains three intercommunicating Ade tasks. We are in the process of

trarsforming eact .f these tasks into PPL circuit compoesites beginning with the
{ second cre listed below:

l a. The mair tesk, named INM _ OUT, interfaces with INM = SRV ard with

LN M _ OUT such that a pipeline effect is achieved for speeding datagrams

F aleng the outbound data path: Hest module —> INM_ SRY —>
: INM_OUT —> LNM_O0UT.

‘ b. An auxiliary (server) task, nemed Read_ Init_ Parameters, which cbtains

from host-related memory the iritial parameter values needed ic perform

rich in A da control structures, is esser:tially completed. A demonstration,
showing the process by whick we make the transicrmaticn tc PPL circuit
compcsite was given in June, 1982 during a DARPA review of our project.
That demcnstratior. was based or. a preliminary versior. of the A da task,
' which has now been updated. The composite produced for the current
t version of the task is mere interesting and is apt tc resemble more clesely
ti.e one we evertually will consider the final version.

E’ datagram transmission. Trarsformatior. of this server task, one which is
]

c. Ar. auxiliary task ramed Translate- TOS- Tesk, which cperates in
parallel with INM - OUT, the mair task, by translatiing type—ef-service
infermation from host—level to local-net level encoding.

]
F
i
|
!
I 3. As just mentioned, the task Read- Init_ Parameters has now been converted

semi-sutomatically to PPL circuit compesites in NMOS. The conversion into
PPL composite form is discussed in part in a new paper by Carter, to be presented
at a DARPA —sponsored meeting at Stanford, on November 5 and in part below.
Carter's paper focuses primarily cn the technolegy for converting the control
structure portion of the Ada task into the self-timed centrol unit of the
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corresponding circuit.

In this report we make some observations on the overall structure of
Read_ Init. Parameters and on some of its subtle details. W e alsc comment on
sore of the steps we traversed in arriving at this versicr. of the task. A copy of
the body part for the present version of this Ada task is to be found in the
A ppendix.

[The complete Ada specification of the INM_ OUT submodule, which indudes
this tesk is giver in a separate report [1¢]. A reeder of the Apperdix version
~nly is expected tcimagine how the task Read_ Irit_ Parameters interfaces with
the remainder of the entire submodule. A reader of the separate report is treated
to a "road map" ol the full Ada structure of the INM_ OUT submodule which
Lelps to understand our overall design.]

N

. A's a prelude to testing hardware versons of Ada pargram units and i suppert of
our work in specifying subsystems in Ada and then simulating them, we
installed, made cperational, and have begun using a complete Intel 432 Cross
Development System. This system includes an Ada cross compiler for a large
subset of Ada and a 432 multiprocessor system consisting of two regular and two
interface processors. W e expect tc receive frem Intel a compiler that includes full
tasking by the end of calendar 1982 and an equally complete resident ccmpiler
approximately a year later. We have also gained hands-or. familiarity with a
rumber of the 432 System's cperatirg system features.

2.1. Interesting aspects of Read_ Init_ Parameters

The structure of Read_ Init_ Parameters includes a cumber of typical and interesting
features of Ada tasks botk from the point of view of inter—task cornmunication and intra—task
body structure. )

—~Inter—task communication. The task includes nested accept statements both of
which have both in—beund and out-bound parameters. 7 here accept statements
are implemented using simple request/acknow ledge protocols.

—Intra—task computatiorn. The task body includes a rich nested loop structure and
one nested block defining local variables whose ranges are determined
dyrnamically. The loops include the infinite cutermest loop of the task, familiar
"fer” locps witk fixed upper bourds, and irdefinite loops escapes from which are
based on "exit when"” clauses. As we have expecled all along, all of these Ada
centrel structure forms map in a straightforward way tc correspondirng control
structures at the state machire level and thence tc PPL dcircuits.

The data path of Read_ Init_ Parameters ircludes several variables w hich are represented
in tke Lardware as registers or counters. One array variable is represerted as a RAM to
represer.t a map frem type—cf-service encoded at the hest level tc type—of—service encoded at
the lccal net level. [The size of this RAM, which is never apt tc be very large ir. any case, is
limited tc fcur—occtets (for a 2 by 2 array) ir. our demonstraticr. implementaticr.. Mecst of the
above variables are shared with the other two tasks of the submodule; that is, they are
declared lccal tc the certaining package, INM_ OUT_ Module, however we perceive no
difficulty in achieving mutually exclusive access.

The cre variable that is local tc the ertire server task does rot and is rot represented in
hardware as a storage element. Variables used locally for loop cortrol are represented as
Lardware courters and/cr registers, but some sharing is achieved where there is nc chance for
cer.flict.

Althcugh the transformation to the A da code to the "engine leve'", i.e., torepresentation as
a (contrel unit, data path) pair, has beer. dor.e by hand, the trar.sformation research reported
in. the rext section nas included corsideration of each of the "hand-made” mapping steps in
this particular exercise.
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2.2. Arithmetic processing

That we have encountered so little trouble performing the mapping for this task is partially
explained by the fact that the task involves only trivial arithmetic processing. {Indeed, the
entire INM_ OUT_ Module inveolves cnly minor arithmetic processing.) At this stage of cur
research we are glad this is the case as we consider it important to determine first what new
chailenges, if any, must be met for achieving asynchrenous control.

2.3. On going and future related work

Now that this part of the research is essentially complete, induding the development cof the
ideas embodied in ASSA SSIN, we expect to be concentraling next on such challenges as the
application of the same or related asynchronous design principles to aritkmetic processing.
Also included in our agenda is research intended to help us automate the mapping of data
path storage components, identified in the transformation from A da program units, into PPL
circuits coupled to their contrcls.
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3. A Transformation System: Theory and Implementation
by
P.A. Subrahamanyam

| W e have made substantial progress elong two directions: implementation of a prototype

transfermatior. system and further development of a conceptual/thecretical basis to support

! the design cf integrated software-hardware systems. We cutlire the major contributions
belcw, with apprepriate pointers to references that centair mere detailed discussions.

3.1. Systems Implementation

—A set cf tools to support experimentation with A da—te—Silicon transformations has
been implemented, and runs on the TOPS-20. The system has been ported to the
VAX-750, and an initial version has been installed. This porting proved to be a
major job (and problemn) due to unstated incompatibilities between INTERLISP—20
and INTERLISP-VAX. Further debugging and testing of the Vax version will be
done when the experimentation is moved completely over tc the Vax. (Given the
needed persocnnel, we expect this to be carried out over the next year, when our
address space requirements force us to move over tc the Vax).

—An initial set of transformatiorn routines has been implemented and is being

augmented so as to handle additional syntactic ccnstructs in Ada. This set of
| programs is intended to aid in the interactive generation of the target hardware
description in a symbolic representation. Details of the current status of this work
are reported in [24].

3.2. Conceptual/Theoretical Basis for Transformation

—A unified theoretical framework to support a broad spectrum of the VLSI design
process has been introduced in [29], which is currentiy available in the form of the
draft of a research monograph. This monograph introduces an algebraic
framework te aid in the synthesis and verification of special purpose VLSI
systems, proceeding from higk level specifications. It allows for abstract

§ specifications of the syntax, semar.tics, temporal and performance requirements
particular to a given problem. The claracteristics of the envirenment in which the
systern is embedded can alsc be specified ar.d are used in the synthesis procvess. In
addition, the framework allows several of the constructs in existing languages to

\ be modelled, incduding nordeterminism, concurrency, ard data/demand driven
evaluaticn. Tkis allows the irfrastructure tc be (1) applied te situations wherein
the problem "specification” is in the ferm cf a program in a corventicral high level
language and (2) used to model the lower level synchrenous/asynchrenous nature
of 1mplementations. Topology and circuit layout gecmetry can also be expressed
by using the algebraic primitives available.

—Anrotaticns tc Ada have beer propcsed to aid the abstract specification of
temporal properties of systems and desired perfcrmar.ce requiremer.ts (25, 28, 12].

—Trarsformatior. methods to epply the theory in the ccntext of Ada to obtain
systolic implementatiors are detailed [27, 24].

—Ar algebraic moedelling of weak conditions to be met by asynchrencus drcuits has
beer. dere — the resulting model is very simple, and the corditiors corcise and
intuitive [26].

‘Fcllowing a discussion of the specification and synthesis methods, illustrations are given

in [29] that demonstrate the use of the proposed theoretical basis irn synthesizing various

¥ classes of algorithms. It is shown how (families of) systolic algorithms may be obtained as a
special case. Methods for proving the cerrectness of implementations are presented and
illustrated with examples. The concept »f the propagaticn of computational loci arises
naturally in course of the developmert, and serves to generalize the commorly used notion of a
"wavefront” of computation for 2—dimensional architectures. Automatable design aids based

on. the proposed algebraic basis are delineated. Finally, it is shown how MOS circuits can be
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modelled using the primitives available, and the algebraic derivatiou of Bryant's simulation
algorithm used in M OSSIM 1l is illustrated in this context.

3.2.1. Interface W ith Diana

Most of our transfarmation tools use the parse tree representation of a program as the
primary data structure they work with. W e have in mind the long term objective of being able
to interface with the tools that are designed to operate on Ada program parse trees, and that
being develcped by the Ada commurity at large (ar.d in particular the DARPA commurity).
To this end, we have been interacting (to a limited extent) with the Diana group (primarily at
Tartan Laboratories).

3.3. Somne Remarks on System Implementation Issues

W hile we are continuing work on the currernt version of the transformation system (in
Interlisp, and on the Vax and DEC-R0), it has become clear that there are two mejor
deficiencies that need to be remedied sooner or later. These are (1) unsuitability of the current
parse tree interface (and parser generator) for several of the transformation routires
themselves; and (2) (lack of) speed: this is due to the slowness of Interlisp on the Vax
(compounded, of course, by the fact that we are working with non—trivial pieces of softw are).

To solve the first problem, it is necessary to redesign the parser generator (which has been
imported from ISI [31]). However, since the other tools (particularly the syntax directed editor
generator and pattern matching system) and the history list mechanism are all very much
inter—related and quite deeply ingrained in the system, there is a substantial software
development effort involved in doing this. Currently, we have neither the equipment nor the
man—power to support such an effort. We envision the redesign being more profitably done
using a newer generaticn of Lisp (e.g. PSL, CommonLisp) for efficiency reasons, and run on
personal machines, rather than cr a Vax like machine. In the interim, however, the response
of the extant version of our system can alsc benefit greatly from being run on an Interlisp—
supporting machine, e.g.,, the Dorado/Dclphin. Having ‘access tc such systems would
obviously result in greatly improved programmer productivity.

- m— e e
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4. PPL Design Activities
by

Kent F. Smith, Brent Nelson, Tony Carter, and Alar. Hayes

A system for the desigr of integrated circuits using a methodology known as Path
Pregrammable Logic (PPL) has been develcped by the Utah VLS Group. This werk has beer.
sponsorec ir part by the DARPA centract and by cortracts with other government agencies
and in part by support from several independent companies. The system addresses the
complete desigr cycle including initial logic desigr, circuit layout, simulatior, electrical
checking, and pattern generator tape preparation. It includes: (1) symbolic layout programs to
facilitate the placement of the symbols on the grid, (2) a simulator patterned after switch—
level simulators but specifically tailored for use on PPL, (3) a checker program for cell

placement verification and DC circuit loading checking, and (4) a commen database for design
representation.

4.1. PPL Design Characteristics
The characteristics of desigr. using the PPL methodology include:

1. IC desigr. is performed by placing small circuit modules w hich can be represented
with logic symbols on a grid representing the integrated circuit. W her the grid
is ccmpletely pepulated, it is both the logical represertatior. and the topological
layout of the circuit. Efficient design changes can be made as a result of this
desigr. methodology because the designer has simultanecus perception of the
circuit function and the cireuit topology.

<. The circuit modules have predefined schematic and composite representations.
They are custom designed to optimize performance and size for any specific
irtegrated circuit process. Desigr Rule Checking {DRC) is performed on the
medule and thus it is net necessary to do DRC cn the overall dreuit since it is
simply a cellection of dircuit modules. ‘

W

- A complete circuit can be designed ir PPL and no custom design is required. The
pads ard the intercornect car alsc be made by the placement of PPL cells on the
grid. All intercorrections between modules are there by default. The designer
orly places breaks to remove connectiors rather thar to adcd them.

o

- Hierarchica: desigr. is possible by custom design cf macres which are collections
of PPL cells put together tc perform spedfied functions. These macres cells can
have custem physical shapes to conferm to specific space requirements.

[94]

- Simulation ar.d checking are easijy accomplished, eliminating the need for very
difficult and time—ccnsuming operations. The orly elemerts manipulated are
symbols rather tharn trarsisters or rectangles which must be checked ir systems
thet design at the trarsistor level.

4.2. The Analogy Between the PPL Design and a Computer Program

There is an aralogy betweer the developmert cf the PPL desigr. methodology and
programming larguages. The 1's and 0's which were used ir early machine language
computer programming are analogous Lo the rectangles which arc used in the custom layout of
integrated circuits. Placing transistors on a composite might be thought of as beirng analogous
tec writing machine larguage code ir hexidecimal since we are still placing rectangles cn a
grid in shorthand ferm. The PPL design methodclogy is aralogous tc writing programs in
assembly language where mnemonics are used to represent specific collections of transistors
(functiors). This PPL design methodology is still very dependent upon the specific technology
which it is designed ir. This is similar to the way that assembly language is machine—
depender:t.

The analogy between the development of computer programs and the PPL methodology can
be carried even further with the compilation of high level cireuit description larguages to

e e
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integrated circuit layouts (silicon compilers). The high level descriptions of the integrated
creuit are machine independent and are compiled directly to a specific PPL cell set designed
in a particular technology. To date there have been cell sets done in NM0S [21], CM 0S [22],
and I2L [23]. An example of such a silicon compiler is A SSA SSIN {7] which is currently in use
at the University of Utah.

4.3. Design Time vs. Integrated Circuit Area

Tke mairn disadvantage cf PPL design methodclogy is that it will probably result in drcuits
which are larger than completely custom--designed circuits. Previous work done by the VLSI
group at the University of Utah has compared some custom designs to some PPL designs. This
gives insight into the tradecffs which exist between the two techniques. A circuit known as
the Utah Serial Cordic M achine (USCM) was designed under a contract with W right Patterson
AFB for the VHSIC program (3, 4, 5] using both custom design techniques and the PPL Design
M ethodology. The USCM was constructed using an implementation similar to the shift~
register scheme propcsed by V older [30].

The USCM was implemented using a CMOS PPL cell set. Its design time and chip area
were compared to those for an equivalent custom NMOS design done at Boeing Aercspace
Corp. The entire CMOS PPL chip was designed and simulated in approximately eight man
days, compared to approximately eighty man days for the NMOS custom design. The CM0S
PPL design was 19 percent lerger than the custom NMOS design. W hLile these figures may
not be an accurate reflection of the variables which enter into design time measurements, they
are indicators that PPL designs require significantly less design time than do equivalent
custom designs and result in. chips which are not significantly larger in area.

This favorable reduction in design time can be attributed to several factors: (1) The designer
has concurrent perception of logical function and layout. Thus, he can immediately see when
the logic function being implemented does not fit in well with the rest of the circuit. The logic
design is made as the compesite is drawn. This eliminates the need for separate composite i
layout/lcgic design stages. (2) The higher level symbolic notation allows the designer to
manipulate very complex logical elements in an efficient manner. It is, for example, not
necessary tc trace a complex series of logic gates to determine the function of the circuit
because the symbolic notation is easily read and interpreted. In addition, the symbolic
notaticn car. be directly simulated and does rot require the extraction of the transistor-level
circuit from the composite.

Past experience would indicate that the area penalty incurred by the PPL design
methodology will eventually disappear as more sophsticated design tools are developed. This
is again analcgous tc the development of cempilers. It is well known that, as expertise in
compiler writing improved, the gap between hand—coded and compiler—produced object code
size became regligible. Some of the techniques being develcped for compaction of integrated
circuit layouts will be used to close the current gap between the area required for custom
designs and actomatically generated PPL layouts.

4.4. The Utah PPL Design System

Ir addition tc the develepmernt of the PPL as & hardware implementation methodology
described abeve, the cther major thrust of research here at Utah has been in developing
software tools for PPL design. The goals of this software research have included the following:
(1) Finding ways to exploit the symbolic nature and representation of a PPL design to reduce
design complexity. (2) Development of CAD tocls around converticnal computer hardware,
which would allow designers to work from remole workstations. (3) Creation of a complete
system tc be used by the IC design ccrmmunity here at Utak.

An integral part of the design system is a Computer Vision CADDS2/VLSI Designer
Svstem. [t is used to do the compesite layout of the individual PPL cells, placement of the
individual cells on a grid to form a circuit, connecting the circuit to pads, adding scribe lanes,
and generating a PG tape. Although we have relied heavily on this machine in the initial
developmert of the system, in its absence all of the functions it performs could be done with
other tools (the Cal-Teck Scftware Package for example).

— - o — o —— - - —--
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The other part of the design system is built around a DECSystem-20. A silicon compiler for
finite state machines (FSM), a symbolic layout system, a simulater and cell placement
checker, and a compaction program all reside there. The transfer of designs between the
Computer Vision machine (CV) and the DECSystern—20 is done using a mag tape written in
Computer Vision External Database format. The combinaticn of these twc computers gives
the system the power of the CV's IC layout features combined with the computing power of a
mainframe. )

] Each PPL cell used in the system has three representations. The compcsites of the cells are

designed so that they fit together by virture of their bei rg placed adjacent to each: other on the

grid. A schematic representation of each cell is created for reference. A graphical

E representation is also created which is used by the designer as he uses the cells to form larger
circuits.

. 4.5. Presently Existing Circuit Layout Tools

] The placement of the PPL cells or the grid tc form a circuit can be done using either the
Computer Vision machine or one of several pregrams on the Utah DECSystem—20. The
program used for cell placement on the DEC System-20 is known as SLED (Structured Logic
Editer) (15] . In SLED, the PPL design is represented as an array of cell symbols which are
then edited. W ith the SLED editor, a simple CRT terminal and modem is all that is needed for
arcuit design but at the expense of mcre cryptic graphical representations of the individual
PPL cells than those found on the Computer Visior machine. In general, the ability to use
SLED from a remote terminal outweighs this limitaticn. Advanced editcrs are now being
designed to run on a CRT terminal that will overcome some of the graphical limitations of
SLED. :

SLED was designed to be similar to a screen—oriented text editor. In fact, the commands in
SLED are the same as the equivalent commands in EMACS (8], a popular screen—oriented text
( editor. Cursor movement is possible in any of the four directions, and regions (windows) can
be marked and then named, dele.ed, replicated, cr writter to a disk file. Ccnventicnal text
editors, however, only allow for scrolling and windowing ir the vertical direction (lires longer
than the width of the screen are wrapped around). In SLED, scrolling and windowing are
possible in both directions. Thus, an array witk 30C columns and 300 rows can be displayed '
and edited using SLED withcut screen wrap—arcund. The effect is that the user has an 80X 24
window which can be moved around the array.

Circuit layout can alsc be accemplished using a first—generaticn silicor compiler.
Compilaton of A da language modules to drcuits is accomplished using the program named
ASSASSIN [7]. This pregram takes as its input a textual descripticr: of the cperation cf a
control unit (Finite State Machine) and frem it generates a PPL layout implementing the
control unit.

4.6. Circuit Simulation and Electrical Checking

Simulaticn of the PPL design is essertial before actual fabricaticn. Ar impcrtant part of
the desigr. system is a simulator (ASYLIM) whick can do simulatior. of the PPL. Because the
PPL cells are simulated ard checked individually at the transient level when the cell set is
designed, the complete circuit made up of PPL cells can be simulated at a switch cr gate level.
ASYLIM [16, 17] reads the circuit database writter ir Computer Visior External Database
fcrmat. Thus, the actual desigr can be simulated rether than a logic equivalent.

ASYLIM is similar tc cther recently developed M OS simulaters in that it uses a switch
model. However, the development of a simulater for PPL has shewr [17) that a spedial
purpose simulator was required in order to preserve the user's abstract view of the circuit.
The input fermat to existing simulators is typically giver in the form of a table or listing of

L ] transistors and nodes. To preserve the user's abstract view of the circuit it was necessary to
design a simulator fcr PPL where the elements in the simula’er correspend to these in the

4] PPL cell set. During the interactive debugging phase of the simulation of a circuit, the user
can then refer to circuit elements by their position in the PPL array. An added feature of the

! PPL simulator is that the information stored in the simulator’s internal representation of the
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circujt interconnect structure ca be used for additional creuit checking unique to the PPL
methodology. The end result is that ASYLIM is similar to conventiona! switch-level
simulators but with an extensive user—interface that allows the user to work with the circuit
at the symbolic PPL level, the same level he uses when designing.

ASYLIM makes use of six~valu-d logic and uses a unit—delay timing model [1,2] The
underlying circuit model primitives are switches but with extensions to allow for the
simulation of certain entities as gates (flip flops and latches). It has been shown that the
urit—delay mecdel is adequate provided the circuit is free from races. Thus it car be used to
model the sequence of circuit activity [2].

An additional advantage of using ASYLIM over other siinulators is that it contains an
exlensive interactive circuit debugger. The features of this debugger allow the user to view
the circuit interconnect structure as constructed by the simulator. This is displayed in a
readable format that allows the user to quickly compare the simulator's interpretation of the
circuit element interconrections and the intended design. This comparison uncovers most
design errors relatively quickly. In addition, the simulator performs a pre-simulation
plausibility check on the dreuit's nodal structure. This feature (the idea borrowed from
Bryant's MOSSIM [2] enables the user to find a large percertage of the design errors without
ever going tothe expense ¢f an actual simulation. This check identifies nodes with fanout but
no inputs, inputs but no fanout, no path to either power or ground, or multiple pullup loads.

W hile a logic or switch~level simulation can provide an invaluable service in verifying the
logic desigr, there are many features of a design that do not show up in a simulation run. For
example, the ground node may be specified as an input tc a transistor in a diagram but it
requires an explicit check on the layout to ensure that ground actually has been routed to that
device. In PPL design, these types of electrical (non-logic) entities are included in the design
using special cells. For instance, the pow er bussing structure is included by placing power and
grcund buss cells around the circuit perimeter. In addition, other cells, like row and colomn
loads, are usually left of out of logic diagrams but must be included for the circuit's correct
operatior.. ASYLIM checks for these cells as a part of its operation.

4.7. Self Timed IC Design with PPL's

A rcther activity which has beer. funded by a private ccmparny and is ¢f importance ir the
development of the PPL methodology is the design of self~timed modules using the PPL cell
set. The work is based or techniques developeri earlier {9] for realizing self~timed stored state
sequential circuits. The criginal investigations were applied to cff-the—shelf SSI parts. The
presert investigatiorns are for the transfer of those ideas to large collecticns (macros) of PPL
cells fer use in the design of self timed systems to be contained or. single integrated circuits.
The investigations have led to further development of the PPL cell set to incdlude methods for
self timed circuits [11].

This research has resulted ir. a design discipline for self—timed stored state machines which
has been develcped usirg a conventicnal sirngle rail Four Cycle signalling protocol. (State
descripticrs are er.coded ir. PLA s represented ir. PPL.) The discipline differs from that used by
Carter [7] which uses a techrique known as a 'one nnt" scheme. The approach used for
realizirg the self timed stored state machires is based or. twc key developments: (1) A novel
clocking circuit that generates @ non—overlapping two phase cock cycle fcr an arbitrary size
register, where the duration of the phi 1 phase of the cycle is autcmatically adjusted to the
register size, and (2) A layout discipline for the folded PLA hclding tne state table, which
guarantees that the inputs to the state register will be valid at the time that the clock cyce
cceurs.

The method depends on certain preperties of the NMOS PPL cell set, i.e. that row and clock
wires are polysilicon, and that registers are formed by locating flip-flop ceils such that their
clock lines are serially connected. This method offers a designer the advantage that he need
not concern himself with the timing details of a state machine design in order to assure that it
will work. Assuming that the state table realized by the PLA is correct, that the rows and
columrns of the design are properly loaded, and that the proper interconnections have been
made (all of which can ve verified with the PPL simulator |17]), the designer can be assured of
correct operation of the state machine. The principle disadvantage of the method is the
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overhead of the clocking circuit which must be associated with each state machine.

In addition to the self-timed state machine design, the described design discipline [11] has
been applied to several interesting types of self-timed data—path modules, for example multi-
bit latches and ripple—carry counters.

4.8. Future CAD Tools for the PPL Design Methodology

Our operational design tools should be erharnced. The following agenda lists the tools we
have identified as being an important part of a design system for this methodology and which
we plan todevelop:

1. A Relational PPL Database Management System — This will allow the same
software tools such as the editor and simulator tc be used on PPL designs done
using any specified integrated circuit technology such as NMOS, CM 08, I2L, and
GaAs. Ir addition, it will provide a standard interface between the various CAD
prograrms.

2. A Symbolic, Interactive, PPL Editor — this editer will be used to create a
symbolic represerntation of a PPL drecuit. It will be used interactively by a
designer for the semi-automatic placing of PPL cells or the PPL grid. Because of
the symbolic nature of PPL, many of the ni:ndane design tasks can be
automatically performed by the editor, leaving the designer free to concentrate
on logical design. The editor will use either tablet or keyboard entry with
simultaneouvs graphical representation of both the logic descripticn and the
dreuit topology.

3. Minimization of PPL programs — Development cf a compaction program for
compressing a PPL design by rearranging its symbolic description. Such a
program will use heuristically driven artificial intelligence techriques to arrive
at a2 near—cptimal solution to the minimization problem. This tool will give us
the capability of doing loosely packed PPL designs which can then be
automatically compressed. This is a unique feature of the PPL design
rmethodology and can be accormplished because of the symbolic nature of the PPL.

N

_Predefined Structured Logic Blocks — We are persuaded that circuits that
already ccnteirn large blocks of nen-PPL structured legic should be designed
using similar techniques to these presently used for the design of such blocks.
Ferinstance, if a random access memeory (RAM ) is required in a circuit, it is more
efficiert, both frem a performance as well as a topelogical standpoint, tc actually
dc a custom laycut of the RAM. The PPL cell set can be extended to include very
elemerntary cells frcm whict macro cells car be developed for arny specific
implemcntatior. of @ RAM. Componerts generated by such an implementation,
although not strictly PPLs, would be compatible with their PPL neighbers. A list
of of structures we expect to implement as macres indudes:

nxm ram

nxm rom

n-bit ripple adder

n bit fast adder

n-bit priority encoder
n-bit register

nxm multiplier

n-bit comparator

n-bit synch counter :
n-bit ripple counter
n-bit by m:l MUX

4.9. Observations

Our research thus far has demonstrated the usefulness of the PPL methodolcgy as a higher
level design techrique for hardware analogous to the use cf assembly language for computer
programming. The analogy has been extended by the introduction of ASSASSIN, a first—
generaticn silicon compiler for speed—independert finite state machines.
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Our design system has proven useful for doing actual design of a variety of integrated
drecuits. It has reduced design times required by an order of magnitude. Resultant designs
are easily simulated and corrected due to their symbolic representation. System designers
with little or no direct experience with integrated circuit design can do actual IC layout
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6. Appendix

- ARda-to-Slllcon Project --

- University of Utah: -

- DoD Internet Protoco! INMN_OUT submodule -

- fda code for the body of task Reac_Init_Parameters -

- Version of October 25, 1982 --

scparate (Inm_Out_Hodule)

task body Read_init_Parameters is

-- fAccessed globals:

-= number_of_local_net_types_
-~ local_net_type_of_service_

-- tos_table:

-- Renamed task entry:

of _service:
table_row_size:

octet_type
octet_type
vetet_buffer_typa

-~ The package MNemory_HNodule containing the task HMemory holds
-~ to-be-sent datagrams as well as initiallzation parameters

-- needed by INM_OUT.

procedure Hemory_reguest(
request_type_formai:

chunk_cf_address_{formali:

octet_tormatl:
renames Hemory.Request;

-- Local variable declaration

memorg_rtquest_tgpe{
-~ Load_address or receive_datum_octet.
chunk_of_address _type;
-- Don’t care when request_type_formal
-~ recelve_datum_octet.
out octet_type)
~- Don’t care when load_address.

-~ The {iollowing variable is commented out. It appeared only in the

--~ "hligh-level” used to read

in the TOS table. See below.

~-- number_of_tos_table_octets: integer range 2 .. max_tos_table _size -~ 1;

octat_register:

octet_type;

begin
loop
accept Go(
init_num_{formsl: bith; -~ For Carter’s paper
-- only; otherwise bit3
response: out out_response)
do
response : = cent_ok; -- Rliso means lnit_ok.
—~ (et from the server all of the addr_chunks needed to form the base

-~ address in memory that holds the inltiallzation parameters and
-- sends these chunks to the Nemory moduie.
for index in ! .. init_num_{formal

loop
accept Srv_reqg (

server_command_datum:

-- Get next address

-= chunk from the

-~ Server Hodule.
srv_command;

response_to_server: out out_response)

do

Hemory_request (

-~ Put chunk out to the
-~ Nemory module.
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request_type_formal => load_address,

chunk_of_address_formal = >
Convtrt_srv_ccmnand_to_chunk_o1_addrcst

(server_command _datum),
octet_formal => dont_care_octet);
end Srv_reg;
end loop;

—- Get the 6 individual inltiallzatlon parameters (contained in the
—— next B octets recelved) from the Hemory Hodule.

for Index in 1 .. 8

loop

nemorg_requast(
request_type_formal =5 receive_datum_octet,
churnk _of_address_formal = > dont_care_X_datum,
octet_formal => octet_register);

case Index is
when ! => Inm_max_packet.lo = ocilet_regisier;
when 2 => Inm_max_packet.hl := octet_register;
when 3 => Inm_address_length ;= octet_reolister;
when é => Inm_time_out.lo 1= octet_reglster;
when 5 => Inm_time_out.hl 1= octet_reglster;
when 6 = > ack_type := octet_reglister;
when 7 =2> Ioca|_net_tgpc_oi_sarvice_tabIo_rou_:izc
:= octet_register;
when 8 = 2> numbcr_o{_local_nct_tgpes_oi_sorvlcc
:= octet_register;
end case; :
end loop;
-- Convert the local net timeocut into milliseconds.?
-- time_out_in_milliseconds := Inm_time_out / 1888.8; .
—- Left-hand side varlable declared
— in Inm_Out_todule. Value Is used

-~- later In Do_send procedurs.

—— Note: Davis never did this In

-- hls design. Is this step needed?
-- No! He don’t need this step

-- slnce the quotient can be

-- approximated by & dlv by 2exll
-- In the event we need to

-- represent milliseconds.

-- Read in type of service transiation table.

-- The follokling code in comments is replaced belok by &

-- “lower-ievel" version that closely reflects the harduare |
- imptementation chosen in which we eliminate the need for

- for & multipltier. '

number _of_tos_table_octets := Iocal_net_tgpo_oi_str»ico_table_rou_:izc l
* numbnr_oi_locaI_nct_tgpos_oi_servicc;

-~ Check to see if{ required table slze exceeds maximum

1f number_of_tos_table_octets > max_tos_table_size then
response = bad_srv_command;
return;

end if;

for index in 1 .. number _of_.vs_table_octets
loop

Nemory_reguest (
request_type_formal => receive_datum_octet,
chunk _of_address_formal = > dont_care_X_datum,
octet_formal => tos_table(Index));

end loop;
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declare
roWw_number: integer range & .. number_of_local_net_types_ot service;

col_number: Integer range 8 ..
IocaI_net_tgpe_of_service_table_rou_slze;
index: integer range 8 ..
number_of _local_net_types_of service
* locaI_ntt_tgpe_of_servlce_tabIe_rou_sizn

1= 8
begin
row_number := &;
loop -- Outer loop reads all rows of TOS table.

col_number := 8;
loop -~ lInner loop reads in one row of TOS table.
MHemory_request(
request_type_tormal
chunk_ot_address_tormal
octet_formal

> receive_datum_octet,
> dont_care_X_catum,
> tos_table(index));

mou

col_number := col_number + 1;
exit when col_nunber = Iocal_nct_tgps_of-s-rvicn_table_rou_size;

index := index + 1;
i index > max_tos_table_size then
response = bad_srv_command;

return; —- Exit the current accept statement.
end if;
end loop; -~ End inner loop.
rouw_number := roWw_number + 1;
exit when row_number = number_of_locaI_net_:gpes_of_service;
end loop; -- End outer loop.
end; -- End deciare block.
end Goj; -~ End ot init processing.
end loop; —- End of outer-most (inifinite)
-~ loop.
end Read_Init_Parameters;
N T e S
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ASSASSIN: A CAD System for
Self-Timed Control-Unit Design

Tony M. Carter
D epartment of Computer Science
University of Utah
Salt Lake City, Utah 84112

October 1982

Abstract

Many software systems exist for automatically implementing synchronous state-machines.
Presented in this paper is a software system — A SSASSIN — for the design and automatic layout of
self-timed (or speed-independent) control-units as integrated circuit modules. ASSASSIN provides
for the editing of textual descriptions of control—flow, the functional simulation of speed-independent
cantrol—units, and the automatic layout of the implementation as a Path-Programmable Logic (PPL)

" program. ASSASSIN uses a well-known lechnique {a cnie—hot slate encoding) for implementation of

the control-unit. Examples are given illustrating the specification and implementation of simple
state-machines. In addition, the design of a statée-machine of interest in the University of Utah's
A da—to—Silicon project is carried out. A portion of the Ada’ code for the "Output Side" of the Inter—
Net-M odule (INM - 0UT), which will eventually be fabricated as part of the A da—to-Silicon Project, is
converted by hand to ASSASSIN input format and from there to an integrated drcuit layout by
A sSASSIN, thus illustrating the use of A SSASSIN in the context of the A da—to—Silicon Project. .

This work was sponsored in part by the Defense A dvanced Research Projects A gency (DARPA)
under coatract number MDA 803-81-C-0414 . o T . .

1. Introduction ' .

The development of CAD tools for integrated circuit design has exploited a vast body of know'ledge
about synchrencus computing systems. O1d and new integrated circuit tachnologies have been well-
suited fcr implementing synchronous computing systems. The success of these synchronous systems
has been prodigious as witnessed by the recent booms in the manufacturing and purchasing of com~-

puting systems. Current research in semiconductor devices is rapidly heading toward the ability to

construct cornputing systems which operate orders of magnitude faster and which are far more com-
plex than those currently available. ASSASSIN treais part of problem of designing self-timed sys—
tems.

W ith projected room-{emperature speeds of logic devices renging down to tens of picoseconds of
delay time [3], it appears that the postulate edvanced by Seitz in Chapter 7 of Introduction fo VLS/
Systems [7] will be horne out. The contention is that the current methods of system synchronization
(global clocks) will result in unreliable circuits as device speeds increase and as device switching
energies decrease. '

If Seitz is indeed right, the newer and faster integrated circuit technologies will require computing
systems to be implemented using something like "Self-Timed" or "Speed-Independent” logic. In
these types of logic, only sequence is of concern. The actual gate and wiring delays will not affect the
function, only the absolute speed. It should be noted that any asynchronous device requires that the

1A da is a registered trademark of the U.S. Government, Ada Jeint Program O flice.
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surrounding enviranment to be suitably conditicned so as to tolerate the "un-synchronized” actions
of the device. ‘

Much work has been done in the implementation of synchronous structures in integrated circuits.
Computing systemns can be divided into two main parts: control and data~path. Universities and
industry alike have produced many methods for generating synchronous system control, some using
the PLA. Work has and is being done in the automatic generation of synchronous data~paths [8]. .
W hile there have been some successtul efforts to construct self~timed or speed-independent comput-
ing systems such as DDM 1 [2] and ILLIAC II (6], there has been very little work done an the im~—
plementation of self-timed computing systems in integrated circuits. This may be because there
were few integrated circuit implementation strategies which readily lent themselves to the construe—
tion of self~timed circuits.

The development of Path~Programmable Logic[1] (PPL), a derivative of the Storage/Logic A rray
(SLA)[10], has proven to be of great value in the generation of self~timed control in integrated
circuits. -

A ssASSIN is part of a research effort, being pursued at the Univérsity of Utah, to convert Ada
programs into integrated circuit implementations. A SSASSIN transforms the cantrol portions of A da
programs into their corresponding integrated circuit counterparts. In addition, AssassIN|[1)
provides a software (ool for the specification, simulation and compilation of self+imed control-units
to integrated circuit module layouts. As such, it begins to treat some of the low-level problems of
self-timed systems design. It uses PPL as the integrated circuit implementation strategy and a
one-hot encoding of the control states(4] as o mapping fram the specification to the circuit
implementation. It allows an implementation independent specification of control (that is, inde—
pendent of fabrication technologies and circuit implementation techniques), and provides functional :
simulation capabilities. Layout generation (analogous to the software compiler code generation)
resulls in self~timed rircuits which functionally match the results ‘of simulation. A SSASSIN also
provides a single, convenient user interface for all of its functions. " g '

2. The Specification of Control: Syntax :

The specification of control for a given drcuit can result in a labelled, directed graph similar to the
one in figure 2-1. There are named nodes which are called states and labelled directed arcs which
are called transitions. Associated with states are operations on output variables. These operations
may be {unctions of only the state, or they may be functions of the state and a boolean function of a
set of input variables. Transitions are labelled with a boclean function of members of the set of input
variables which dictates the condition upon which that transition will take place. Transitions may
also have associated operations on outputs (M ealy M achines). '

The ability to specify strictly sequential control is certainly essential. A lthough our current un—
derstanding of concurrent processing is very limited, the ability to handle concurrent paths of contro]
may also prove to be useful as our understanding increases. C oncurrency (in the context of control)
can be interpreted in two ways. The first is where two separate machines operate independently,
communicating via some signalling protocol. The second is where a single machine performs some
types of concurrent processing by Laving concurrently executing control paths. The first is handled
oy having control-units composed of multiple state-machines. In terms of graphs, this lmpli& that
one can draw many separate graphs, whose interconnection is implied by output and input variable
names. The second is handled by allowing, within a single state~machine, some notion of forking to
begin concurrently executing control paths and a notion of joining to terminate concurrently execut—
ing control paths. The addition of the concepts of FORK and JOIN to the graph model of control-flow
isillustrated in figure 2-2. _ . A .

Output generation from a control-unit can be either enduring or ephemeral. Enduring outputs

i il MR St ik
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Figure 2-1: A Simple Control-Flow Graph

are latched and operated on by SET and RESET only. W hen an enduring output is SET it will
remain on until a RESET operation is performed. Ephemeral outputs are gated and remain on only
while the required condition is met (either residence in a state or execution of a transition). They are
operated on by HOLD. .

Figure 2-8 contains a control-flow graph which contains all of the features induded in the discus—
sion above. States are represented by rectangle: with the name of the state indicated in the upper
left comner, followed by a colon. Output generation is Indicated by a right-errow. To the left of the
right-arrow will be a boolean expression and to the right the operations to be performed and the
names of the outputs which are to be operated on. Far example, State B contains three output
operations. The first is unconditional (it depends anly on the state of the machine) and causes the
ephemeral output "01" to be held true. The second is conditional (the boolean expression Is "I3") and
causes the enduring output "03" to be SET. The third is also conditional (the boolean expression is

"I4 OR I5") and causes the ephemeral outputs "02" and "05" to be held true and the enduring output
"04" to be RESET.

Alsorequired in the specification of control is the concept of an initial state. In the graphs, this is
indicated by the arc labelled M asterReset which has no state node at its tail.

In summary, the specification language for control should indude the following features:
—the concept of an initial state,
—simple transitions from one state to another (M oVE),
—transitions from one state to many states (FORK),
—transitions from many states to one state (JoIN),
—outputs controlled only by resldence in a state or by the execution of a transition,

—outputs controlled by a boolean combination of inputs AND by residence in a state or by
the execution of a transition,
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—arbitrarily complex boolean expressions for conditions (controlling transiticns and output
generation),

~lambda transitions (where the condition is the tautology TRUE),
—ephemeral outputs,

—enduring outputs,

~multiple and variud transitions from a given state,

—multiple and varied transitions to a given state, and

—multiple state-machirne control-units.

The task now is to codify the points listed above, such as in a grammar in BNF. It must allow for
all the points listed above while limiting its expressive power to those points. The language must be
easily parsed and it is desirable that parser generators be used to generate the code for the parser.

A bove all, the language should be concise and intelligible to design engineers.

The complete BNF for the language (which is called CUDL) is included in Appendix I. The lan—
guage has the ability to represent each of the points listed above. ‘There are four types of blocks in
the language. The first is the CONTROLUNIT block. This block indicates the name of the overall
control-unit and cortains STATEMACHINE blocxks. It also indudes the specification of "global” input
expressions which assign boolean expressions to an internal variable which can significantly reduce
the size of the code written to describe the control-unit. The names of "global” inputs can be used in
the descriptions of transitions and output generation. Figure 2-4 contains the CUDL code describing

the machine whose graph is in figure 2-3.

controlunit CompiieTestS:
inputs: BIG := I1 and (I2 or not I3);

seiftimed statemachine Test9:

startstate R:
forkon BIG to B,C;
moveon NOT BIG to D;
hold 01,02;
reset 03;
set 04;

end;

stote B:

joins C on 14 AND IS to F;

joins E on I4 OR IS5 to F;

hoid 01;

if 13 then set 03;

if 14 OR IS then begin reset 04; hoid 02,05; end;
end;

state C:
moveon NOT 16 to E;
joins B on 16 to F doing begin reset 03;
if BIG then set 04; end;
hold 01;
end;

state D:
moveon 17 to F doing set 03;
and;

state E:
joins B on TRUE to F;
end;

state F:
moveon I8 to R;
moveon NOT I8 to D;
end;
end;
and.

Figure2-4: CUDL Code for the Graph in Figure 2-3
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Eventually, given an appropriate display device, 2 graphical version of this langubge could be
developed and the specification of control could be done in terms of control-flow graphs rather thana
textual description of the graph. A project is underway to implement such & front end to ASSASSIN
on an Apollo DOMAIN camputer.

3. The Simulation of Control: Semantics

Given that the syntax of control-unit specification is defined, the designer must also understand
the semantics in order to use the system. The semantics of control is directly influenced by the
implementation strategy selected. Since the specification of control should allow for concurrency
within a given state-machine, a scheme which allows the implementation of such concurrency must
be selected. The notion of concurrency eliminates the possibility of completely and uniquely encod-
ing the state variables. The one-hot implementation scheme (campletely decoded) allows for easy
implementation of concurrency. The following discussion is largely based on the assumption that a
one-hot implementation is used. '

The specification syntax described in the previous section can be interpreted in three ways. The
interpretation depends on the partiéular mapping strategy being used in the cpmpilatién. The three
possible types of mapping are synchronous, asynchronous, and self-timed. In order to allow far all
three interpretations to be eventually simulated and compiled, the language includes the concept of a
state-machine type. The choice of a state-machine level semantic interpretation is madle' explicit
through the use of the keywords: SELFTIMED, ASYNCHRONOUS, and SYNCHRONOUS. In this way, the.
user cen specify various types of ‘ccntrol using the same system. Only -thé\ SELFTINED option is

The simulation of sel{-timed control can be functional in nature. This functional simulation.
provides knowledge about the sequential function of the circuﬁt__ Since the jmplementation of the
circuit is such that if sequence is correct, function is correct, the user is sure that'the circuit will -
work if the environment in which he places it is conditioned to interact in a sel{—timed mnnil:er with
the control-unit. , : .

The simulation of synchronous and asynchronous control really requires the use of a detailed
tirning simulator. This simulator must be able to make accurate delay calculations based on vari—
able gate delays. In the world of the integrated circuit, these delays may or may not be early
calculated since long wires and heavy loads will significantly alter the operation of any given gate.
Thus, the problem of simulation for these types of systems is much more difficult that for the self-
timed systems.

To interpret the semantic actions of the control--unit, one must know first the actions to be taken
to execute a transition and second how outputs are generated. Transitions are nperations that
change the internal state of the machine. Although there may be many transitions specified for
leaving a given state, it should never be possible to execute two transitions concurrently from the
same state. Since the control-unit has no control over the sequence of arrival and the timing of the
inputs that trigger transitions, the problem of having two transitions executed simu'taneously is
inherently a dynemic cne and its avoidance requires a detailed knowledge of the environment into
which the control-unit is to be placed. If two transitions were executed simultaneously, the result
would be a state-machine which would be in two sequential and mutually exclusive states at the
same time. '

The three interpretations of control have somewhat different views of transitions. The one-hot
imple'menlation uses transitions that are essentially handshakes between logically &djaceﬁt states.
This characteristic can be portrayed by a "tokeanassing-tm&i:ie". with provisions made for the
controlled splitting and recombination of tokens (FORK and JOIN). In a transition between state A
and state B, state A will first set state B and then state B will reset stateA. Consider the case (ﬁgm '
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3~1) where a machine contains four sequential states, A, B, C and D. Assume the machine is currently
in state B. If a transition is executed, moving from state B to state C, both states B and ¢ will be on

reset state C before state € can reset state B, the machine will be left in a state where both states B
and D are on —resulting in a malfunction.

. Thedifferences between the three sementic interpretations all center around what to do about this
timing problem. In the self-timed approach, it must be guaranteed that such a malfunction cannot
occur. In order to ensure this, the state-machine must verify that each transition is complete before
allowing the next one. This is done by imposing an additional condition on each transition. It.is no
longer sufficient just to be in a state for a transition to be possible. In addition, al] states which could
possibly cause a transition to the current state (its predecessors) must also be off. In the

the clock period is of the same order as the delays in the faster gates, the problem will not be
avoided. Unfortunately, the introduction of the dock necessarily slows the response of the control—-
unit. Of the three approaches, only the self~timed approach guarantees a control-unit which cannot
malfunction dueto internal timing problems.

Looking from inside the control—unit, there are two types of outputs. The first is the ephemeral or
gated output. Itis turned on only while the appropriate condition is met. The second is the enduring
or latched output. This type of output is controlled by setting or resetting a latch and therefore its
level is maintained even after the appropriate condition has disappeared. It is possible, however, to
place a latched output in a metastable condition by trying to set or reset it at the same time, so some
care must be taken in working with latched outputs.

The generation of outputs from a control-unit is always conditional upon something. W hat we
term as an unconditional output is an output that depends only on being in a particular state or only
on a particular transition being executed. W hatwe term as a conditional output depends not only on
state or transition, but also on a boolean combination of input variables.

Unconditional outputs are operated on immediately upon entry into a state or upsn the execution

of a transition. Also, ephemeral outputs which are unconditionally operated on from a state or

transition must be released when the state is left or the transition is completed.

Conditional outputs are operated cn when the entire condition becomes true, induding entry to a
state or_ekecutlon of the appropriate transition. Ageain, ephemeral outputs which are conditionally
operated on from a state or transition must be released when either the boolean condition is no
longer met or the state is left or the transltion is completed. ‘l
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Becnuse of the handshake going on between logically adjacent states, there is a small amount of
time when the machine is legally in both states at the same time. This allows for ephemeral outputs
to be ORed in a glitch-free manner between logically adjacent states. Enduring outputs controlled
by logically adjacent states pose a problem if both a set and reset are attempted at the same time
— the output latch wjll temporarily be placed in a metastable state, possibly adversely affecting the
surrounding environfnent. '

In AssassIN, there is no implicit communication between any two state—machines specified as
part of the same control-unit. All such inter-state-machine communication is accomplished by
explicit signalling protocols using inputs to and outputs from the state-machines.

4. The Implementation of Control

The actual physical implementation of control depends on two factors: the circuit implementation
technique and the control~unit implementation technique. The circuit implementation technique
should be picked so as to make the physical realization of the control~unit implementation technique
as simple as possible.

"The selection of a control-unit implementation technique depends on the set of features to be
implemented. Thus, employing FORK and JOIN prohibits using a mondlithic, completely encoded
control-unit. Including FORK and JOIN in a control-unit implementation technique requires either a
very complex strategy for splitting out the concurrent sections of the control into physicelly (and
perhaps logically) separate seclions, a partially encoded scheme where the sequential contral sections
are encoded and the concurrent are not, or a completely decoded machine. The one—hot implemen—

tation is & completely decoded scheme in which FoRK and JoIN are easily included. The tradeoffs

involved in selecting the one—hot strategy are discussed by Hollaar [4]. .

Basically, the one-hot strategy involves the use of one latch for each state, iwo gates for each -

transition, a latch or driver for each output, and one gate for each condition controlling cpnditionél
outputs from a given state or transition. For complex machines, the automatic full-custom layout of
& one-hot control-unit could be very difficult. . :

Path~Programmable Logic provides a very regular structure that is particularly well suited for
implementing one-hot control-units. In the mapping of contral onto PPL using a one-hot encoding, a
single latch is used for each state variable. Each transition maps to two PPL row segments, ope to
set the next state and the other to reset the current state once the next state has been set. In
addition, complex boclean conditions on transitions (or on outputs) may require the introduction of
temporary gates. In PPL, the AND of several iriputs is detected on a single row. The OR is formed
on the columns. For this reason, extra PPL columns containing temporary variables must be jn—
serted for forming the OR terms of booclean expressions. Outputs are controlled by using a single
PPL row to drive all the unconditional outputs controlled by a state or a transition. Each separate
condition for controlling conditional outputs uses a single PPL row.

4.1. The Implementation of Control: Floor Plan

W ith the basic mapping strategy defined above, we soon see that there are many ways to specfy
the global organization or floor plan of the control—unit. The one selected for use in A SSASSIN was
chosen because it appears to be simple. This floor plan (see figure 4—1) has the state latches, tem—
porary variable inverters, and input inverters in a single band across the middle of the control~unit.
Output latches and inverters are placed in a band across the top of the control-unit. Inputs arrive
from the bottom of the control~unit and outputs are emitted from the top of the control~unit. This
stacking of inputs and outputs results in a significantly smaller area and is a direct consequence of
using a PPL-like structure for the dreuit implementation. State transitions are generated in the
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bottom half of the control-unit and boolean expressions and outputs are generated between the state
latch band and the output band. It is possible to make other area optimizations in the PPL layout of
one-hot control-units.

Output Latches and Gates

Boolean Expressions
and
Output Generation

State Latches, Input/Temp Gates

Transitions

Figure 4—1. Global Organization of A SSA SSIN Output

This global organization results in a simple PPL generator that needs no routing tools for con—
structing the control-unit. All the PPL generator has to know is wh.lch cells to plnce and where to
place them — an easy problem when compared with routing.

4.2. The Implementation of Control: Code Generation

¥ e have now almost fully specified the entire system. All that remains is to actually construct
algorithms for generating PPL programs that implement the control—unit. The self-timed control—
unit requires the use of latches far representing states. These latches must indicate their change in
state after the set or reset signal has arrived. The PPL cell designed for this purpose is the four—wire
latch. It contains cross—coupled NMOS inverters for the latch with inverting-buffered outputs.
Thus, this cell cannot signal its change in state until after the latch has changed state. A SSASSIN
can currently generate either a CIF description of the control-unit or a file written in
Computervision’s CADDS2 External Data Base format.

The transitions for a self-timed control-unit require two row segments. The first senses that the
machine is in a certain state — say state A, that all possible predecessor states (states which could
have caused a transilion to state A) have been reset, and that the condilion for the transition is met.
If all these conditions are met, the latch for the next state is set. If there are outputs controlled by
the transition, an inverter is used to appropriately control output generation from the transition.
The second row segment detects that the next state has been successfully set and resets statea.

Figurz 4-2 illustrates a simple transition between two states. The machine is in state B, having
come from state A. State A has been reset. The first row below the state latches performs the
"forward” transition, or setting of the next state. The ‘0’ under the latch for state & detects that state
A hes been reset. The ‘1’ under the latch for state B detects that slale B has been set. The ‘1’ under
the inverter for input I1 detects that the input condition has been met and the ‘S’ under the latch for
state ¢ will set state C when the transition occurs. The second row performs the "reverse” transition,

10
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.or the resetting of the previous state. The ‘1’ under the latch for state ¢ detects that state ¢ has been
sét and the ‘R’ under the latch for state B will reset state B when the forward transition has been
completed. Completing the operations of both these rows constitutes a complete transition.

1
1

A B

1
2

- g
o

LI N T T TR T B
(. CEEY T PRy pupi

t 0t 1 1 3 3 1 3
I=l=)=]=]R===P-]]

!
| " Figure 4-2: A Simple Self~Tinied Transitian
i

A synchronous transitions are different from self-timed transitions in that they do not sense that
predecessor stales have been reset. If gate delays are sulfidently naon-uniformy, a machine construc—
| ted in the asynchronous manner would not function properly. Figure 4-3 show the same section cf
control as in figure 4~2, implemented asynchronously.

|
|
Al
{
|

t 1 8t 3 3 1 3
I=1=1=11=P=]-c-§
LI S I D T T B |
I=1=1=1=|R===p-1|

Figure 4-3: A Simple A synchronous Transition

Synchronous transitions are implemented the same as asynchronous transitions, with the excep—
tion that the state latches are replaced by clocked flip—flops. This is illustrated in figure 4=,

| i1 | |
| (| | |
| 11 | |
| 11 | |
] | 1111 | |
lA1 1 1B C)
= =-1-2- = - Phi2
| 1 | |
- - - - - - Phil
| 11 | |
| 11 | |

t 8 3 32 s 3 3 3
I=1=1=11-P=1==-§)
LI I A I Y
I=1=1=1=1R=~=p=])

Figuie 4-4: A Simple Synchronous Transition

The following discussion explains the ASSASSIN compilation of all the constructs described by
Hollaar [4), Examples are drawn from the sample control-unit whose flow—graph is contained in
figure 2-3. The CUDL code for this control-unit is in figure 2—4. The complete PPL program for this
example is in figure 4-6. The various constructs being discussed contain portions of this PPL
program. Row segments are referred to from left to right in a given row. Row and column numbers
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are as labeled in the figures.

Figure 4-6 illustrates the compilation of a move transition (from state A to state D). Rows 17
through 19 contain the state latches, input gates and temporary gates. T1 conteins "I2 and not 13."
T2 contains "I4 or I6." T3 indicates that the JOIN transition from states B and C to state F is cur—
rently being taken. T4 indicates that the MOVE transition from state D to state F is being taken.
Row 15 is the forward transition from state A to state D. I{ senses that state 1 is active by the ‘1’in
column 1, that "BIG" is false by the 0’ in columns 2 and 3, and that state F is inactive by the *0’ in
column 22. State D is made active by the 'S’ in column 17 and the row load is the ‘P’ in column 11.
The reverse transition in row 14 simply senses with the ‘1’ in column 17 that state D is active and
resets state A with the 'R’ in column 0.

Scale—of—two loops pose a particular problem. It is possible to get stuck in both states, with no
way to get out. Scule—of-tw 2 loops therefore require some sort of mutual exclusion on transitions to
avoid this problem. Figure 4-7 illustrates the compilation of a scale—of-two loop. Row § contains
the forward transition from state D to state P. Note the ‘0's in columns 0 and 22 which detect the
predecessors to state D. The '+’ in column 18 is used in generating the outputs associated with this
transition by driving T4 when the transition is in progress. The right segment on row 12 resets state
D after the forward transition to state F has been finished. Note the ‘1’ in column 19 which senses
that input I8 has not yet become false. This gives the required mutual exclusion of input signals in a
scale—of—two loop. Row 4 contains the forward transition from state F to state D. The 0’ in column
19 detects the false state of input I8 and the other ‘0's detect the inactivity of the possible predeces—-
sors to state P. Row 4 contains the reverse transition asocmted with the transition from st.ate F to
stateD. The '0’in column 15 senses that input 7 is currently false. ’

Figure 4-8 illustrates the FORK transition from state A tostates B and C. Row ~.13 cantains the
forward FORK transition. It senses the state A is active, that étate F is inactive and that input BIG is
true (the '1's in columns 2 and 3). It also sets both states B andc. Thé reverse FORK transition is in
the left segment of row 12. 1t detects that both states B and ¢ have been activated and resets stateA.

Figure 4-9 shows the JOIN transition from states B and C to state F. Row 9 implements the -

forward transition by sensing that the predecessor state (A) is inactive, states B and C are active,

inputs I4, I5 and I6 are true, and by setting state F. The '+ 'in column 14 is used for generating the-

outputs associated with the JOIN transition from state ¢. The reverse transition is implemented in
row B where the activation of state F is detected and states B and C are deactivated (reset).

Figure 4-10 shows the compilation of the input boolean expression BIG ~I1 and (I2 or not I3). The
leftmost row segments on rows 20 and 21 (I1+ —=1~P| and |+ ~P=0l respectively) compile the subexpres—
sion "2 or not I3." The ‘+ ' in column 3 generate the OR of these two rows into T1. 12 is sensed by
the ‘1’ in column 4 of row 20 and "not I3" is sensed by the ‘0’ in column 5 of row 21. To sense "BIG",
the program must contain ‘1's in both columns 2 and 3. To sense "not BIG" it must contain ‘O’s in
both columns 2 and 3.

Figure 4-11 shows both conditional and unconditional output generation from states and tren-
sitions. Row 22 implements the unconditional outputs controlled by state A. The *1' in column 1
senses that state A is active. The “+'s in columns 6 and 13 implement the "HOLD 01,02"
statement, the 'S’ in column 17 implements the "RESET 03" statement and the ‘R’ in column 10
implements the "SET 04" statement. The S’ is used to reset a LATCH2 PPL cell and the ‘R’ is used
to set it. Rows 24 and 25 implement the conditional outputs controlled by state B. Row 24 detects
the "I4 or I5" condition arid HOLDs 05 and 02 and resets 04. Row 25 detects the "I3" condition and
sets 03. The last row segment on row 20 (Il-P——SI) implements the unconditional output (03)
controlled by the JOIN transition from states B and ¢ to F. Row 26 implements the "if BIG then set
04" statement from the JOIN transition in state C.

'




e SN Pl ey —

ASSASSIN

T
TovaT
Taitay
TaT v
TiTaT
TaTaeq
-5o--—
TVNAS
T
Tavan
Tivaw
—z=--
TIIaT
=
Ty
TaTa
Tevar
-Sa~-—
TTTaT
—sz--
Tyl
TaTae
TiTa
q-l.-q
- e

}

1}

1}

]

L

}

]

s

s

y
S SEETEEEY EEERTS B My

e et |

L]
A ety P Y

]

s

~t=ci smaog-§)

B-S---g-fonenu]|

1-P-===aucR =]

S |
3 3
LI |
1
t 8
LI |
3 3

3
3 3
LI |
3 = 3
L |
L |

3

3

3

3

]
cePeccecccmmacRecacn]|

S R Y|

§ ® @ © @ @ -
’ - - - - - -
$ = ® @ @ a o
§ ® ® @ o @ ~
’ - - - - - -
§ *» ® o ® @ =
}

}

t - 3

- - 3

R LER ST 10

mleccceccccoc]|-l-|R===P=]oceanan]]

e e 1L LY

R S PR P

IR LT TR Y

CE -
% =
I =
e
I T |
se-ececccRem-ecccRe-cceccReccRee-
1 1
1 8 3
e E Y B I P P
1 11
t &t 1
]
]
3 = 3

R R e b

§ = =13
I=l=l=l=le|=]Bommmmccccccgocapmn-

§ = =

I=11eB=focccmmmmeaapane

1] == = = == § e c@aa"
13

]
3
3
3
3
3
s
3
]
s
3
L]
L]
3

T Y B Y PR P A PR D DO

§ ® § = ® « =
$] = 3 -
2 = g =

A
L I |

}
L 2 |
I |
L I |

3
B |
| T B |
~1-1-1-P

}

}

]

}

}

}

}

H

11 - -

11 -

IR
1t = = =3 =
'

1

I

11

13 -

$ 8 -

1 - -3

1 - -

1 - -3

1 - -

1 = =7y

1 - -3

1 - -

“Bl=l=l+=P=1l=l=]=l=l=|pP=R=ll=]|=|=|=|=]|

“PetcleleceSial=lol=l=l=l=l=]==]=)u]~)

I = 3
I=1=l=l=l=1=l=)1-ocp-

Figure 4-6: Sample PPL Program

L ST B e T P prparparoa

e BatC T TTE T - T

R B R Ty T lu.

I=ldemmecccctamae cpaRecctocmccccaaS el o]a]~]

IRe=ecmaamacp

I=l=1=1-1+

e R T s 1 N L Y IO Sy ey iy iy

3
l=l=l=]+=p

13

3

1

-1-1

3

1 - 3

1 - 3

1 -3
I=l=l=l-l=|-|R=-=eccacrccRe=cpmun

1 - 3

1 - 3

1 - 3

$ -

1 =

1 - 3

$ -

-3
1

3

]

1

]

3

]

]

]

3

I=l=l=l=l=l=l=]=]=|=|=|=|Rmmmnnm=

]

]

|=1§=mmccccocgmmmacacp

IR==cce o mm e cpocanans
]

-1

A |
3

18--ccncnnmaaan

I=l=lele|=]=|Reeocccccaaaan

IB==cecccoaaanc).-

N Bmme e

]
I=I=l=l=1=l=l=l=|=le|=|=|=|=|=1-=-

bl A e

l=1=-11
- -1
- -1 -3

g




ASSASSIN

111111

Column Number
g1234567898123465¢67

-—— —— —

1}
B Rt ey A B

t & ¢ &t t_
1=l=1=1=1=1-1,

|Remsmemeccccmceapommmencanoceconee

14

Figure 4-8: Compilation of the MOVE Transition
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Figure 4-8: Compilation of the FORK Transition
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5. The Assassination of a Control Unit

This section illustrates the complete design of a non-trivial sta
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Postel [6]) as a test vehicle. The Internet Protocol has been decomposed into three communicating

hardware (and software) submodules [5). Figure 5-1 il
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of N INM _IN submodules, each of which receives transmitted data and assembles datsgrams from a
single local erea network, N INM_0UT submodules, each of which appropriately fragments and
transmits datagrams to a single local area network, and a single INM - SRV submodule that inter{faces
the N INK_ 0UT and N INK_'IN submodules to one or more host computers. The complete A da code

describing the INM_OUT submodule has been written end compiled and willis presented in a
forthcoming report. ’

hﬂt-I bty e
. 1mm_Swv
ININ : Nt
‘s, staging %, segment
ares o=t buffer
(RAY) (RAN)

D) P o
*1 Tomon t oW ouT

Figure 5-1: Internet Protocol Hardwam Submodules

The INM_ 0UT submodule of the Internet Protocol has been selectzd as the initial test case.
Preliminary Ada code in the form of a complete task has been written and compiled. INN_ 0UT
consists of three separa‘e tasks, Main, Read. Init_ Parameters and Translate_ TOS_ Table. Of
these, the hardware architectural design has been completed for the Read. Init_ Parameters task.
Read- Init_ Parameters deals with the initialization parameters of INM_ OUT and loads various
registers with data related to the transmission of datagrams through a local area network. [l-
lustrated in figure 5-3 is a block diagram of the hardware implementation of this task. Professor A
Davis perfci-med the mapping of the initial version of Ada code into a block diagram. Several
modifications have been made since that time. The block marked "Read_ Init_ Pars = FSH" is the
cantrol-unit derived from the Ada code for the Read_ Init_ Parameters task. Figure 5-2 contsins
the Ada code for a section of Read_ Init_ Parameters. The complete code is found in A ppendix .

Figure 5~ contains the control flow—graph for the Read_ Init_ Parameters task as extracted from
the Ada program. It should be noted that this perticular flow—graph does not use the FORK and JOIN
transitions available in CUDL. Indeed, FORK and JOIN will probably not be used in implementing

‘tasking, but may be used for more fine grained parallelism based on data independency. Ada acoept
statements are translated into request-acknowledge hundshekes with the appropriate module.
These are indicated by the name of the accept (GO or SRV) concatenated with "REQ" and "ACK".
State RIPO is the initial state of the machine and sends initialization signals to severa} of the
datapath modules in the environment of Read_ Init_ Parameters. Of particular interest, the signal
INITNUM REG.LOD is held dﬁring this state. This signal indicates to the register holding the
initialization number to watch the associated three-wire bus and assume its value at all times.
W hen this signal is dropped (in state RIP1), this register latches the value on the bus. The first
accept statement {"accept GO( ... ) ") is begun with the transition from state RIPO to state RIP1.
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bagin
loop
sccept Go( =-- Cat OP Code froe Mein (aize of Memory Addrese)
Init_nue_fareel: bitd
reeponsaet out out_reepanss)
do
reeponee 1 ® sent_ok’ == Aleo assns inlt_sk.
for index in 1 .. init_nue_ foras)
% lesp
ocesi.t Srv_reql -- Proceee Neeory Addrass
eervsr_coemand, detum: srv_coeeand;
reesponee, to_servar: out out response) .
do
Reeory _requastl == Put chunk out to the Memory -od'uh.
requeet_type_foreel ®> loed eddrece.
chunk_of, eddrsse, foree]l =) sarver_comeend. detun.
octet, foreal ®> dont_cere_octet)s
and Srv_reaq:
b ) end loop:

== Get the § individue) initielizetion perenatere (conteined in the
== naxt B ectete receivad) froe the Hemory Modula.

for index in ® .. 7

loop

Heeory_ reaqueetl
requeet_type, foreel ®> receive ,detue_octet,
chunk_of_eddrase,  foramel =D dont.cere_X_detum
octet_foreel =) octet ragietar):

caee index ie
when 1 =D lne_nmex_pecket.le 1 & octet resiaters -- B bite
? when 2 &> lne_mex_peckat.hi 12 octat_repietars -- B bite
when 8 => lne_eddrese, length 12 octet_reginters == B bite
when 4 =5 lna_time_out.lo ' & octat_regieters -~ B bite
shen § ®> lne_time out.hi tE octet reapiater; -- B bite
when 6§ =D eck type 18 octet_regpiaters == ) bit
when ? =3 locel_net type of_eervice teble row_eize

12 octet_resiater; == 3§ bite

when 8 => nueber_of, locel_net_typee of_eervice .
: . 1® octet_regiater: -~ ¥ bite

W es——— T e TS

end ceee;
end loop:

=~ Reed in type-of-earvice trensletion teble.

daclere -
rou_number: integer renge o .. nueber of locel net_types of eervices
' col_nueber: inteper renge O .. locel _net_type_of_eervice_ row_eize:

indax: integer renge @ .. number_of_ locel_nat_typee_of eservice
& locel_nat type of_service row_ eize
1E 03
bagin
row_nueber 1 & @
loop == Duter loop reede eal)l rowe of TD0S teble.
col_number 1& B3
loop == lnner loop reade in one row of TDS teble.
¢ Nseory_requeet(
requeet_type, foramsl £ receive_dete__octet.
chunk of_ eddreae foreel =) dont_cere_X_detua,
octet_ foreel £ toe teblelindex))
col_number 1= col_nueber + 13 -
Sx1t when col_number & locel_net type of_eervice row eize; . '
index 1 = index ¢+ )
if index > eax_toe_teble_eize then
reeponee ' & bed erv, commend;
return; == Exit the current eccept atetement.
end ifs3
and loop; == End inner laop.

TR ey e v ey s, Tm—

rou_nuzber 1 = row _nuebsr + 13
exit when row _nueber = numbnr_of_typss_of eservics;
and loops == End outer loop.
| ends ==~ End declare blochk.
1 end Gos == End of init proceeeing.
end loop? -~ End of outer~ecet (infinite) loop.
- end Reed, lnit_Pereecatere:

Figure 5-2: ADA Code for Read_ Init.. Parameters

: Note that the condition for the transition inctudes, in addition to GO.REQ, INITNUM.REG.DON and
INITNUM.CTR.DON. The machine cannot proceed until it is sure that the initialization number
register contains the correct value and the associated counter has been reset. In state RIP1, the

¥ machine begins the second accept loop. W hen the SRV.REQ signal arrives, a transition is made to
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state RIP2, where the counter is incremented (indicating that another byte of address is to be trans—
mitted to the memory module), and a request-acknowledge handshake is performed between
READ_ INIT_ PARS and the memory module. The signal MEM.SEND indicates to the memary
that it is to receive data. W hen the counter has been incremented (INITNUM.CTR.DON) and an
acknowledgement from the memory (M EM.ACK) have been received, a transition is made to state
RIP2. State RIP2 terminates the handshake with the INM_ SRV module by asserting the signal
SRV.ACK. Once both SRV.REQ and MEM.ACK have been lowered, the output of the comparator
between the initialization counter ard register is examined. One of the two transitions from state
RIP2 is executed based on the value of INITNUM.CMP.EQ. If INITNUM.CMP.EQ is on, the in—
itialization loop is terminated. If it is off, the initialization loop is continued.

The memory module now has the complete address of the parameter block which needs to be
transmitted to INM_oOUT. State RIP3 begins an interaction between the memory module and
Read_ Init- Parameters that loads a set of registers appropriately. The handshake with the
memory module is begun by holding MEM.REQ. At the same time, the register counter (which was
initialized to 7) is incremented (and is now 0). W hen an acknowledgement is received from the
memory (M EM .A CK), and the register counter is finished counting up by one, a transition is made to
state RIP4 where the signal REG.DECODE.ENA signals the appropriate latch to gate in the value
from the memory bus. M EM.REQ is left on here so that the valid data on the memory bus does not
disappear before it can be latched. W hen the appropriate register signals that it has the data loaded
(REG.ACK), a transition is made to state RIP5. W hen the memory acknowledges the termination of

& transmission cycle (not MEM.ACK), a comparator with the register counter is made to see if all

required registers have been loaded (REG.CTR. EQ?) If not, the loop is repeated, incrementing the

‘register counler each time. If so, a transition is made to state RIP§ and the processnng of t.he Type—

of-Service (TO S) table is performed 3 . :

The type—of-service table is to be a linear array of registers (or ram cells), mdexed by row and :
column. Initially this indexing was done via a multiplication (in the A da code). It was replaced with
a doubly nested loop to make the hardware implementation easier and more straightforward. In
state RIPS, the type-of-service column counter and type—of—service address counter are incremen—
ted. They were initialized to their maximum value in state RIPO. At the same time, a handshake
with the memory module is begun (by raising MEM .REQ). W hen the memory has placed the data on
the line and replied by using MEM.ACK, and when the two counters, TOS.COL.CTR and
TOS.ADR.CTR have been incremented, a transition is made to state RIP7. Here the TOS table is
signalled to load the value from the memory bus (TOS.REG.LOD). MEM .REQ is held high so that
the data on the memory bus remains valid. W hen the-data is in the TOS table, TOS.REG.DON is
asserted and the next state becornes RIP8. This state terminates the handshake with the memory
module. W hen the acknowledgement from the mermory arrives, if all columns in the current TOS
table entry have been processed, a transition is mad~ to state RIP9 to proceed to the next TOS table
entry. If more columns in the entry need to be proces:-zd, the TOS.COL.CMP.EQ signal will be false
and the transition from state RIP8 to state RIP6 will be taken.

In state RIP9, the ocolumn counter (TOS.COL.CTR) is cleared and the row counter
(TOS.ROW.CTR) is incremented. W hen these two operations are complete, the next state becomes
RIPA where a check is performed to see of the entire TOS table has been loaded. If it has not,
TOS.ROW.CMP.EQ will be false and the a transition cccurs from state RIPA to state RIP6. If
TOS.ROW .CMP.EQ is true, the output GO.ACK is asserted, terminating the "Accept GO ( ... )’
statement. When GO.REQ is lowered, the next state becomes RIPO to begin over again when
necessary. Figure 5-6 contains the CUDL code for the Read_ Init_ Parameters state machine.

The CUDL code in figure 5-6 was run through ASSASSIN. The code was simulated to verify that it
matched the flow—graph; the associated PPL program wes then generated through compilation of the
CUDL code. Figure 56 contains a plot of the PPL program for the Read.. Init— Parameters control.
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ControiUnit ReadInitPorms:
StateMachine RIP:

StartState RIPS:
moveon GC_Req and (InitNum_REG_DON and InitNum_CTR_OON) to RIP1;
hold Inithum_CTR_CLR, Ini tNum_REG_LOO, REG_CTR_NRX;

held T0S_Col _CTR_MRX, TOS_Row _CTR_CLR, TOS_ROR_CTP_MAX;
end;

state RIPJ:
moveon SRV_Req to RIPIR;
and;

state RIPIR:
moveon NMEM_Rck and InitNum_CTR_OON to RIP2;
hold NEN_Req, MEN_Send, InitNum_CTR_INC;
set GO_Response;

end;

state RIP2:

moveon not SRV_Req and (not NENM_Rck and InitNum_CHP_EQ) to RIP3;

moveon not SRV_Req and (not MEM_Ack and not InitNum_CNP_EQ) to RIP1;
hoid SRV_Rck;

end;

state RIP3:

moveon MEN_Rck and Reg_CTR_OCN to RIP4;
hold NEN_Regq, Reg_CTR_INC;
end;

state RIP4:
moveon Reg_RCF to RIpS;

hold NEM_Req, Reg_Cecode_ENR;
ond;

state RIPS: : :
moveon Reg_CTR_EQ7 and not MEA_Rck to RIPG;

moveon not Reg _CTR_EQ7 and not MEN_Rck to RIP3;
end;

state RIPG: ' .

moveon MEM_Rck and (TOS_Co! _CTR_OCN and TOS_Rdr _CTR_OON) to RIP7;

hold HEN_Req, TGS_Co! _CTR_INC, TOS_Rdr_;TR_INC;
end;

state RIP7:
moveon TOS_Reg_OON to RIPS;

hold TOS_Reg_LOC, NEN _Req;
end;

state RIP8:

moveon not MEM_Rck and TOS_Co ! _CHP_EQ to RIPS;

moveon not NEM_Rck and not ToS_Co!_CMP_EQ to RIP6;
end;

state RIPY:
moveon TOS_Col _CTR_DON and TOS_Row_CTR_DON to RIPR;

hoid T0S_Col_CTR_MRX, TOS_Row _CTR_INC;
end;

state RIPR:
moveon not TOS_Row_CHP_EQ to RIP6;
moveon not GO_Req to RIPS;
If TOS_Row_CHP_SQ then hoid GC_RAck;
ond;
end;
end,

Figure 5-6: CUDL Code for Read_ Init_ Parameters Control

Figure 5-7 shows the composite layout.

The compilation of the control unit took approximately 2 minutes of DEC-System 20 CPU time.
The resulting circuit is 2028 microns by 1050 microns (39 PPL columns by 30 PPL rows using 6—
micron geometry). The datapath related to the Read_ Init_ Parameters task cannot be layed out
until the relationship of some of the registers, which represent global variables (with respect to
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Read_ Init_ Parameters), with other associated contral and datapath elements has been established.

6. Conclusions
A SSASSIN demonstrates several significant poinis.

1. Control can be specified at an abstract level and then automatically and easily imple~
mented as an integrated circuit module. It is possible to map control specified at even

* higher levels of abstraction to something A SSA2SIN understands, thereby enabling us to
make progress toward a true silicon compiler. Such work is reported in [11].

. 2. Self-timed {or asynchronous) control-units with concurrency can be easily implemen~

ted. ASSASSIN shows that the control for self—timed machines can be designed with
relative ease.

3. The successful use of Path—Programmable Logicin ASSASSIN shows that PPL has great
-value as a drcuit implementation technique, at least for this type of control-unit. This
also shows that PPL is indeed amenable to the development of sophisticated CAD tools
that use it as the underlying circuit implementaticn technique.

4. The mapping of Ada’s rich set of control constructs is very straightforward as il-
lustrated by the generation of the control for the Read. Init_ Parameters task.
A SSASSIN represents a step forward in the design of integrated circuits by allowing

high level descriptions of integrated circuit modules to be automatically compiled to a
layout. ’
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I The Syntax for ASSASSIN
The following is a BNF description of CUDL - the Control Unit Description Language. The fol—-
lowing are to be used in understanding this description: ) i

l <> = 3 non-terminal symbol
{l - B or more repetitions
$ = - Is defined as
! ’ | - OR
: language terminals are indicated by uppercase
|
’ <control-unit> := CONTROLUNIT <identifier> :
| , {<Input-descriptor>} <sm-list> END .
| <identifier> t= <letter> <id-taii>
<id-tail> 1= <letter> <id-tail> | <digit> <id-tail> |

<letter> | <digit>
| <input-descriptor> = INPUTS: <input-reduction-list>
! <input-reduction-list>:= <reduction-statement>
<input-reduction-list> |
. <reduction-statement>

<'identifier> st = <condition4> :

<reduction-statement>

<condition> t= <term> OR <condition> |'<te’rm>
) <term> t= <primary> | <primary> AND <term>
<primary> i= <identifier> | (<con ition>) |
‘ NOT <primary> | TRUE | FALSE
<sm-list> t= <sm-descriptor> |
<sm-descriptor> <sm-list>
<sm-descriptur> " 1= <sm-type> STATEMACHINE Cidentifier> :
<state-list> END ;
k' <sm-type> := SELFTIMED | ASYNCHRONOUS | SYNCHRONOUS
F <state-list> t= <state-descriptor> |

.<state-descriptor> <state-list>

STARTSTATE <state-name> :
<statement-list> END

STATE <state-name> :
<statement-iist> END

<state-descriptor>

we

<etate-name-list> t= <state-name> , <state-name-list> |
<state-name>
<state-name> t= <identifier>
<etatement-liet> t= <statement)> ; <statement-list> |
: <statement)>
| t
<statement> t= <transition-statement> |

<action-statement>




ASSASSIN ;

<transition-statement>:= <transition-op> <transition>

<transition-op> := MOVEDN | FORKDN |
JOINS <stats-name-iist> ON

l <transition> := <condition> TD <state-nams-list> ; |
;f <condition> TD <state-name-list>
DOING <action-statsmsnt-list> ;

<action-statement-list>:= <action-statement> | ' ' |
BEGIN [<action-statement> ;] END :

<action-statement> := <action-op> <output-list> | |
<if-action-statement>

<action-op> := HOLD | SET | RESET

<output-iist> := <output-name> , <output-list> |
<output-nams>

<output-name> t= cidentifier>

<if-action-statement> := IF <condition> THEN A ‘ i
<action-statement-list>;

IL Ada Code for the Read.. Init_ Parameters Task of the INM_ O:UT Submodule ) |
onpiratc (inn,ﬂut_ﬂqdulc) ; . . ) !
teek body Rccd_lnlt_?lranctcrlhll .

-- Acceesed globaie:

: == number_of_iocai_nst_typee_of_service: octet_type

¢ == local_net_type_of_eervice_table_rou_elze: octet_type

i -- tos_table: octet_buffer_type
]

-=- Locel varlebis decleretion:

-- The folloxing variable le commented out. It appeered oniy in the
=~ "high-level" used to read In the TOS tabie. See beiow.

) -- number_of_toe_teble_octate: Integer range 2 .. mex_toe_table_slize - 1
5 | octet_regleter: octet_types
begln
ioop
eccept Gol
Init_num_formel: bit3;
reespones: out out_respones)
do
respones := eent_ok; -- Aleo means inlt_ok.

~- Get from the eerver aii of the addr_chunke nseded to form the

-~ baes addrees in memory that holde the initiaiization paraweters
| -- and sende these chunke to the Nemnry moduis.

for index in 1 .. Init_num_formai

ioop

accept Srv_req( -~ Get next address
== chunk from the
~-= Server floduic.
1 eervar_command_datum: erv_command;
" responss_to_server: out out_responee)
do
Hemory_request ( . ~= Put chunk out te
-~ the Nemory moduls.
request_type_formai => joad_address,
chunk_of_eddress_formai =3 eerver_command_datum,
’ octet_formai " => dont_care_sctet);
; end Srv_reg; : -
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end jocop;

=~ Get the 6 individuai Initiaiization parametere (contained in the

~- next 8 octets received) from the Nemory Noduie.
for index in 1 .. 8

loop
Nemory_request (
requeet_type_formai =D receive_datum_octet,
chunk_of_addreee_foraa) => dont_care_X_datum,
octet_formai => octet_register);
case index is .
when 1 => inm_max_packet. io 1= octet_register;
when 2 = > Inm_mex_packet.hl . = octet_regimter;
shen 8 => inm_sddress_iength 1= octet_register;
when 4 => inm_time_out.io 1= octet_register;
when § => inm_time_out.hi t= octet_register;
whon 6 = > ack_type 1= octri_register;
shen 7 = > locnl_not_typo_ol_o.rvlcowtubln_rou_ol:o
1= octet_regleter;
when 8 => nulbor_o(_local_not_typot_pf_o.rvlco
t= octet_regieter;
and case;
end ioop;

-- Reed in type of eervice trensiation tabis.

deciare .
rok_number: integer range
8 .. nunbor_pf_locl:_nct_tgpos_pf sarvice;
coi_number: integer range .
9 .. locul_n.t_typu_oi.t.rvlco_rou_nlzo;

indexs Integer range ) A
8 .. number_of_iocai_net_types_ot eervice
] locol_not_tgpa_of_sorvlco_rou_alzo
R 8 ) ) .
begin : . )
row_number = 8; )
ioop ~= Outer icop reade aii rowe of TOS tabie.
coi_number s = 8;
ioop == Inner icop reade in a ron of TGS tabie.
Nemory_raquest ( '
requee t_type_forme! = D> roc.lvo_dltun_oct.t,
chunk_of_addrees_formei => dont_care_X_datum,
octet_formai = > toe_tabie(index));

col_number 1= coi_number + 1;
exit when coi_number = iocol_nat_typn_o!_porvlco_rou_lizi;

index 1= index + I;
it index > max_tos_tabie_size then
respones := bed_srv_command;

return; == Exit the current accept statement,
end if;

end loop; ~- End inner iocop.

rou_number := row_number + §;
exit wuhen row_number = number _o{_typee_of_service;
end ioop; -- End outer loop.
end; -~ End deciare biock.

== End of init proceseing.

end icop; -- End of outer-moet (intinite}

-- loop.

eny Ruad_lnlt_Porlnotnrs;
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Automated Design of VLSI Architectures:
Some Preliminary Explorations
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Abstract

We discuss the design of a program transformation system that is geared to aid in the
automated design of special purpose architectures (circuits), given a high level specification of a
problem. The synthesis of systolic implementations is outlined, and examples of syntactic forms
that aid in the description of such architectures (and algorithms tailored to them) are given.
Finally, we summarize the results of applying the methodology in synthesizing several classes
of systolic designs (proceeding from abstract, axiomatic specifications), and in the VLSI
implementation of an A da program fragment describing a part of the DoD Internet Protocol.
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1. Introduction

The need for design methodologies for special purpose VLSI drcuits that help combat the
spiralling complexity and cost of current day integrated circuit designs is oy now well
established [15]. W e believe that it is also important that such methodologies enable a smooth
embedding of the resulting circuits into larger systems that consist of both software and
_specialized hardware components e.g., on board control systems. In this context, we have been
exploring the use of high level languages as & medium for specifying the desired behavior of
specdial purpose systems, as well as paradigms for mapping such specifications into VLSI
architectures [26, 25, 11]. We are currently developing a set of automated tools for
transforming axiomatic and/or high level. language program specifications in Ada into
integrated software—hardware systems [12, 13]. In this paper we describe some of the details of
the design of our transformation system, and in particular the manner in which the language
constructs influence the architecture of the final machine. We then indicate some ways in
which parallelism may be exploited, and how systolic designs may be synthesized. Syntactic
constructs suitable for describing the behavior of special purpose architectures are also
discussed. Finally, some preliminary results in applying the methodology to non—toy examples
are outlined: these include various classes of systolic designs and a hardware implementation of
an A da program fragment that describes a part of the D epartment of D efense Internet protocol.

1.1. Overall Approach
We first summarize briefly our overall approach to the design of integrated software—
hardware systems.

The initial specifications are annotated A da programs. The "annotations” [9, 8, 22] allow for
a statement of )

1. Abstract axiomatic specifications of the behavior of a system, including statemen’.
of temporal characteristics.

2. Performance requirements to be met by an acceptable implementation along
various dimensions of interest e.g., area, time, response time, throughput,
reliability etc.

3. Relevant characteristics of the external environment a system is designed to
operate in eg. external timing oconstraints, relative function application
frequendies, etc.

Given either abstract spedfications, or an Ada program, or a combination, the following
transformations may now be attempted:

—If the initial specifications are axiomatic, then these may be directly translated into
an implementation suitable for being cast into silican [25]).

--Alternatively, the abstract. specifications may be transformed into an
Implementation using primitives available in typical high level langueges eg.,
Ada [283].

—The high level language programs may be transformed into hardware
implementations [12]. .

In essence, the annotated A da specifications may be transformed into any desired mixture of
software programs and special purpose hardware. The transformation into hardware is
attempted in two phases: the output of the first phase is a symbolic description of the hardware
implementation, which is then transformed into a set of masks suitable for actually fabricating
the dircuit. The latter translation uses a program that automatically generates layouts for
asynchronous control units, given their symbolic description [3]; the layout of the data paths is
currently done interactively using existing relatively low level design aids (eg., a
ComputerV ision system). -

The symbolic description of the hardware implementation is couched in an extended Ada
syntax, by using "macros” for describing specialized hardwure structures and algorithms
tailored to them. Two major reasons for the use of such syntactic extensions are that (1) we
have found it dumsy to describe certain kinds of concurrency (both at a high and low level) if
we are constrained to use existing Ada program structures; (2) specialized primitives are very
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often more appropriate for succinctly describing algorithms that are tailored to special
architectures. :

We have found that the problem decomposition strategy and the configuration of target
structures chosen is very often critically influenced by the desired performance requirements
and the complexity measures associated with the target primitives available. This "strategy
guidance” may be done either by using automated complexity computation aids [17,24] or
interactively.

A typical transformation scenario can roughly be divided into two "phases™: (1) an analysis
phase, wherein some global information relating to the program/specification is gathered; and
(2) a synthesis phase wherein the implementation is built up. The analysis phase typically
requires an examination of the entire program; this is usually done by traversing the parse tree.
The synthesis phase is typically incremental in nature, and involves the use of the information
gathered in the analysis phase and (optionally) further information of a more specific nature
(i.e., not computed in the analysis phase) which may invalve non-local analysis.

In essence, therefore, there is » common set of global properties needed for guiding the

transformations which is profitably gathered in what we henceforth refer to as the (global)

"analysis" phase, and a set of more specific properties that are better computed if and when
needed. This separation into two phases, albeit somewhat nebulous, allows for

—Conceptual darity
—Improved efficiency (because glotal traversals tend tc be comparatively expensive)

—A dded flexibility in "global” decision making, since one is not forced to make an
implementation decision too prematurely.

The remainder of this paper is organized as follows. In the next section we discuss the
trarsformation of specific classes of syntactic constructs in Ada into hardware structures. In
section 3, we focus on a few of the strategies useful that enable us to exploit parallelism, and
then delineate the development of systolic designs (proceeding from either abstract
specifications or from A da programs). W e describe some examples of syntactic constructs that
aid in the succinct symbolic description of systolic designs, and in the transformation process. In
appendix 1, we summarize the results of applying the methodology in the transformation of a
fragment of an Ada program specifying the Department cf D efense Internet Protocol [16] into a
hardware implementation.

2. Transformation Strategies

W e outline here a set of transformation strategies that we have developed for some of the
commonly used syntactic constructs in Ada[1]. These can be broadly classified into either a
"direct” (in situ) transformation of the language construct, or an "indirect” one, involving same
optimization and flow analysis. The latter can be thought of as a set of source-to~source i.e.,
Ada~to-Ada transformations that account for the desired optimizations, followed by "direct”
transformation. For the examples discussed in this paper, the target hardware model assumed
is an asynchronous one [2] wherein state transitions controlled by request-acknowledge
protocals that are implicitly embedded in the underlying model.

To facilitate expasition, we consider the A da ~onstructs in order of increasing complexity so
that we can use the examples for, say, an assignment statement, in an if statement. W e split
the basic constructs into two classes. The declarative constructs serve to determine the
collection of registers, the storage elements and the data paths between them. W e refer to this
as the "environment” part of the chip. The statements in the body of the program determine the
(ensemble of) state machine(s) that constitute the "control” part of the chip. It is to be noted
that this distinction is not very rigid, since, in ger.eral, the environment part of the drcuit is
affected by the statements and other constructs p esent in the procedural part of the program,
and vice—versa.

The statement part of a program may in turn be viewed es contributing to either intertask
communication or intratask computation. W e envision an Ada task as a "standalone” drcuit
which is capable of communicating with other (co-)tasks. Since the A da language specification
does not detail the manner of this intertask communication, except for asserting that the
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underlying machinery ensures the existence of an asynchronous protocol (where the selection of
ready tasks may at tinies be non—deterministic), we in fact implement an explicit interfacing
machine which handles communication with other tasks. Its purpocse includes maintaining
information about the availability of the task machine for calls from the "outside", its allocation
to different callers depending on any priority mechanism that might be desired, and
maintaining queues to allow for conflicts. A detailed discussion of various intertask
comrflur:xl;eation strategies and the trade—offs involved is contained in a companion report (see
also [12]).

2.1. Declarative Constructs

2.1.1. Object Declamtions

There are two kinds of object declarations in the Ada language — those which declare
identifiers to be of a predeclared subtype, and those that declare them to be arrays. Of the
predeclared subtypes, the most basic are the language-defined primitive subtypes, integer, real
end boolean. A declaration of an identifier (or an identifier list) to be of any of these types
results in its implementation being selected from a library of available primitives. For integers
this presently consists of registers and RAM's. The registers used for integer implementation
are in turn made up of flip—flops varying in complexity from simple flip—flops to two—phase,
read-write flip—flops. The choice among these alternatives depends on the results of global
data—flow analysis. Reals are implemented as special floating point registers, along with an
encoding scheme and special arithmetic functions. Scme booleans, depending on the results of
global analysis may be found to be redundant in the circuit. These may result in their being
implemented as combinational circuitry that computes their value at all instants. The booleans
that cannot be eliminated in this manner are implementer as single flip~fiops.

If the object declaration is an array declaration, this is usually implemented as RAM's of the
appropriate primitive type. The range of values that the variable can assume is used to campute
a default maximum size for the RAM which is further narrowed down, if possible, by using
global analysis. .

For object declarations that declare identifiers to be of some non—primitive type, the
transformation system implements themn as specified in the implementation of the type
declaration for the particular type.

2.12. Type Declarations

An Ada type declaration defines a new dass of objects. This can either be a simple range
restriction on the predefined Ada types viz. integers and reals, an enumeration type, an array
type definition, an access type definition, a derived type definition or a private type definition.
For every type definition the transformation system maintains information about a default
implementation in a predetermined template. W hen transforming object declarations of this
type, this information is used to guide the particular implementation strategy adopted. The
stored information is incrementally refined when global analysis is performed on identifiers
declared to be of the particular type. -Currently this is specified interactively by the user.

If the type declaration is a restricted range on a predefined A da type, the limits of the range
are either constant or varjable identifiers. The first case implies a direct upper limit on the size
of all identifiers that are declared to be of the type, and this information is added to the
template implementation. If the limits of the range are identifiers, the results of global data—~
flow analysis for the identifier are used to establish an upper bound on the range, and this
information is stored in the template.

Alternatively an A da type declaration may define arrays, enumerations, records and access
types. Currently the default array implementation consists of either RAM's or ROM's. The
ranges of the indexing variabies determine the size of the RAM, and the range of the type of
individual objects in the declared array govern the word-size of the RAM . Since determination
of minimum storage at compile time is, in general, a computationally impossible task, we have
a default maximum on the size. The transformation system finalizes this decision after
interacting with the user. Sometimes the user is able to specify the sizes more restrictively than
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the system ever could because of a more thorough understanding of the program. This aspect of
the transformation system is more critical than in conventiona! compilers, because of our
special target medium.

For enumeration types, the transformation system determines a minimal binary encoding for
the set of objects declared in a reasonably straightforward manner. All future references to
these enumerated constants are transiated to a reference to one or more of these encodings. The
other type definitions are somewhat more complicated, but the underlying theme of
determining a default implementation for them is carried over, and a template is maintained to
hold this information.

2.1.3. Renaming, Use and W ith Declarations

Renaming (and equivalent use/with) declarations are used in Ada to provide new names for
identifiers, particularly if the identifier is declared in a different program unit. They do not
imply that a separate copy is maintained, but are simply a notational convenience. As far as the
chip architecture is concerned, they indicate the necessity of running a bus between two
modules to make the variable available to both. (It is also possible to have duplicate copies, and
ensure that consistency is maintained, but this approach is not currently used by the
transformation system.) In cases where the whole circuit occupies more than one chip, or when
the modules are physically placed far apart, renaming declarations enable some flexibility in
exactly which module contains th~ actual instance of the object declared. (W e currently prefer
to rely more on use/with declarations, since too heavy a use of renaming declarations leads to
more human errcrs tHat are not so easy or impossible for a compiler to detect.)

2.1.4. Subprogram, Package and Task Declarations

These kinds of declarations have been grouped together because, in general, they are all
program units. Thus they indicate the presence of different computational modules. The scoping
rules of Ada determine how these modules access variables present in other modules, and
govern the generation of additional communication circuitry if necessary. If a subprogram
module has more than one potential calling module it becomes necessary to provide some
arbitration between possible conflicts. This is currently done interactively, where the user
either specifies the arbitration circuitry or (usually) tells the system to assume that no conflict
will occur.

2.2. Imperative Constructs

2.2.1. Assignment Statements (invclving simple variables)
The general form of an assignment statement is

<Identifier> := <Expression>

The "code" for the target machine is generated by a top—down traversal of the parse tree. The
transitions in the asynchronous target machine coincide with the order of node-visits in the
top—down traversal of the parse tree. W e illustrate the method with the familiar example as
shown below. Consider the simple assignment statement

a 1= bx2-4xaxc;
with the abstract parse tree as shown below (Figure 2-1).

The root of this tree is mapped into a state, DoAssignment, which sends requests to
subordinate states which perform the computations required. W hen it receives acknowledge
signals fram all such secondary states it causes the result to be "load"ed into the LHS of the
statement. Here the code for "computing" the LHS is trivial since the LHS of the statement isa
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Figure2-1: A bstract parse tree

v simple variable. The only other subordinate state consists of ComputeRightA rgument which
1 computes the right—hand—side of the statement. Thus when the assignment node is visited, the
system, recognizing that this is an assignment, issues a call to generate noode” for the
1C omputeLeftA rgument"” and the »ComputeRightA rgument" states. The code generated as a
! result (in the DoA ssignment state) is to perform a request/acknowledge signal protocol with
these two states, follow ed by code to achieve the actual load. For the "ComputeRightA rgument”
state, however, the code generated would await a request from "DoAssignment”, issue calls to
states that compute its arguments, await acknow ledgements from them, and then (since the
I system knows that it is at a subtract node) perform the subtraction. This is independent of
whether, say, the subtraction circuitry has been optimized' to a series of decrements, or
implemented by some general subtraction hardware. The state then returns an acknowledge to

the "D oA ssignment” state. This resultsin the following "code" for the "D oAssignment” state.

task body StateDoA ssignment is

begin
accept ForkToC omponents do
‘ fork (on (ReqToA ssignment), tu(StateC omputeLeftArg,
! ‘ StateComputeRightArg));
end ForkToComponents;
end StateD oA ssignment;

The code for "join"ing the results of the two "fork"s and actually loading the results is as
follows.

task body StateFinishA ssignment is

begin
accept Dojoins() do
join(on(A cknow ledge), LastOfLeftArg,
LastOfRightArg);
end Dojoins;
hold(RegA .load);
end StateFinishA ssignment;

Continuing with the above example (for asynchronous implement,ation), we get the naive
impl ement ation shown in Figure 2-2. However, the transformation system is aware that
parallelism can be successfully exploited to compute both operands of the subtraction
simultaneously. Two of the states in the two separate "fork''s can be combined into one state, as
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but is unnecessary as far as the transformation system is concerned.

times 2 can be usually

implemented as increment/decrements rather than using spedal arithmetic
hardware. M ultiplication/division by powers of two are cheaper when
implemented as shifts. Boolean operations can be eesily implemented directly as

combinational circuits. Exponentiation, however, poses & problem because it
invariably indicates the need for special hardware. An alternative strategy for
implementing arithmetic operations is to have a special module that is used by
more than one state-machine. Decisions such as these typically involve
consideration of trade—offs (viz space vs speed) and a study of frequency and
regularity of usage is required in this context.

on Identification: This is done using standard data—flow
analysis techniques. Elimination of such portions of the program involves either
source—to—source transformation, or some kind of "indirect” transformation of the
source to incorporate the results of the data flow analysis.

analysis of the requirements
results. Data flow analysis and work concerning
optimization of temporary allocation in conventional compilers is useful in
indicating if registers (or other storage) used in earlier parts of the machine can be
reused. Here we have an added advantage in that there isnoa priori upper bound
on the number of such storage units, and they are not restricted to hold only

certain specific data types.

for storing intermediate
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2.22. Conditional Statements
The general form of conditional statements is as follows.

<ConditionalStatement> t= 'if’ <Condition> 'then’ <Statement>
[else’ <Statement>]

The machine that performs an if statement’s function consists of a state (or a set of states) to
evaluate the <Condition> part. This state returns a boolean value, depending on which the
machine makes a transition to one of two states that are the start states for the two
<Statement>'s. If there is no else clause, one of the branches makes a transition directly to the
statement following the if statement. This is shown in the figure below (Figure 2-38).

Req to
Ack false Ack true

! Exit Cond I :

Figure 2-3: Skeletal state machine for an if statement

In addition to guiding the transformation of assignment statements, inferences from global
analysis as are used to determine the presence of redundant boolean variables in the source
program. Such variables are then replaced by just the output line from some combinational

drauitry.

2.23. Loop Statements
Ada provides for both simple, unconditional loops as well as while, for, and until loops. A

construct of the form

*loop® <SequenceOfStatements> ;

is implemented as the set of states that execute the <Sequence0 fStatements>, followed by a
direct transition to the first state in the <SequenceQfStatements>. Any "exit" statements
inside the <Sequence(fStatements> translate to transitions to the state immediately following

the loop.
W e indicate in the next section how such constructs may be used for the synthesis of systolic
chips.
For while-loops of the form
*uhile’ <Condition> 'loop’ <SequencelfStatements> 3
the transformation is similar, with the exception that the states for

<Sequence0 fStatements> are preceded by states similar to those for a conditional statement
(without an else clause), and the last state in <SequenceOfStatements> is followed by an

unconditional transition back to the states for evaluating the condition.

For constructs wherein the loop consists only of a select statement, (many task bodies fall
into this category,) the loop can be replaced by a single state where the machine waits until 1t
receives a signal from any of the modules that call the carresponding accept statements. It then




e I e

TR S —

makes a transition to the appropriate set of states, peiforms the required computation, and
returns to the "wait" state.

2.2.4. Procedure Calls

Procedure calls are directly implemented using Request/A cknowledge communication
between the caller and the state machine that implements the procedure. The state machine
first lcads the parameters of the procediure on the bus/lines to the called machine, and then
issues a request to it. Alternatively, a "lazy evaluation” kind of scheme may be used, where the
parameters ere evaluated by the caller only when needed by the called module (in response to a
demand from it.) A fter the caller receives the acknowledge from the function module (which
implies that the output data line(s) from it are valid) it makes a transition to the next state.

Global analysis is used to obtain information such as the following:

1. W hether it is useful to implement the function "in line". This saves some
communication overhead at the expense of increased silicon area. In effect such an
arrangement provides a private copy of the procedure to every cailer. In VLSI we
have the added advantage of not being restricted to a universal scheme. Some
procedures can be implemented in-line while others may be centrally shared
modules. An even more general solution provides some callers ( depending on
estimated /measurca frequency of use ) with private copies of the function, while
others share a common unit.

2. Identification of globals accessed in the procedure body. This involves deciding on
appropriate communication protocols and routing considerations.

2.3. Optimization T
O ptimizaticns of a design are possible at all of the levels in the design hierarchy:
—At the very lowest level, it is possible to increase system performance by
redesigning individual transistor layouts (e.g. changing W idth/Length ratios) to
increase speed etc :

—At a somewhat higher level, performance improvements can be obtained by using
spedialized circuits to achieve certain functions instead of using a standard cell set.

—At the next level, symbolic version of iayouts can be locally "manipulated” in order
to improve efficiency e.g., this may involve swapping adjacent columns (or rows) of
PPLs etc., while ensuring that logical function is not impaired.

—At the state machine level, performance improvement can affected by state
minimization, improved parallelism, etc.

~Finally, the high level architecture of the implementation can be juggled in order to
improve performance, while maintaining consistency with the the abstract,
representation independent, specifications of the problem.

It is important to note that these levels have rough analogs in the realm of standard
language translation/machine architecture: faster/more powerful instruction sets, peephole
optimization, flow analysis on intermediate compiler code, and algorithm improvement.
Further, the overall improvement is typically greater the closer the optimizations are to the
initia] stages of development of an implementation: if is therefore more advantageous to
attempt to design an appropriate architecture (/algorithm), rather than spend time optimizing
channel layouts.

3. Systolic Architectures

In this section we delineate a few transformations that enable the synthesis of some classes of
systolic designs. For the sake of brevity, we deal here only with a few classes of looping and
recursion constructs. The methods are applicable to a wider dass of starting points, and the
theoretical basis for the mechanical synthesis of such designs (among others) is elaborated upon
in [26]. As a consequence, we have here chosen to emphasize examples of syntactic constructs
that are suitable for describing such algorithms and architectures, rather than the details of the
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synthesis strategy itself.

The primary decompositions possible are one or more of sequential composition, parallel
decomposition, and pipelining. W hich decomposition scheme is adopted typically depends upon
the performance criteria desired, a detailed analysis of which we omit here. For example,
pipelining improves throughput, while parallel proccessing improves both throughput and
response time over sequential solutions. Of course, the response time is very much dependent
upon the algorithm used (i.e, upon what the spedific decomposition is, what the
subcomputations involved are, and how the partial results are combined), and to a lesser extent
upon the lower level circuit implementation strategies. In particular, we recall that as a
consequence of wire delays being the dominant factor in single chip implementations,
asynchronous implemcntation strategies are preferable in order not to slow down the whole
system and to minimize skewing effects.

We now discuss examples of syntactic macros that aid the representation of such
decompositions.

3.1. Iteration
Consider the loop structure

for i inl .. N ioop
x(i) := Fix(i))
end loop;

A possible sequential implementation of this loop structure is shown in Figure 3-1. This
implementation consists of a processing element (or cell) that computes the sunction F. When
the stream of values x,, ..., Xp is input to the F—cell, the output is the stream F(x,), ... F(xp).

A parallel iinplementation is possible if the computation of F does not have any side effects
on the subsequent computations in the loop. Such an implementation can use N instances of the
same F—cell, input the vector of values <xj,...,Xy> in parallel, and output the vector of results
<F(x;),....F(xp)> in parallel. The i—th instance of the F—cell thus inputs x and outputs F(x;).
This is illustrated in Figure 3—-2.

W hen each computation through the loop results in the computation of a partial result that is
"pssembled together” in the subsequent iterations, a pipelined implementation can e

generated.
Thus, if we consider

for i inl .. N loop
x 3= F(x)
und loop;

then a pipelined implementation using N instances of F—cells is shown in Figure 3-3.

A mmbiﬁaﬁon of one or more of these techniques can obviously be employed whenever
needed.

3.2. Recursion

Some classes of recursive functions (procedures) can also be mapped into systdlic
implementations. It is of course possible to first apply standard recursion to iteration
transformations and then apply the techniques discussed here. It is however also possible to
avoid this intermediate step in several cases. As an example, the form shown below can be
directly transformed into either of the implementations shown in figure 3-4.

function Natch(s, p: string) return boolean is
begin
if s=null
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then if p=null
then return(trus)

else return(false)
else if Last(s) =Last (p)
then ﬂatch(ﬂll_&ut_tnt(l), Rll_aut_Lnt(p));

end Maich;

3.3. Syntactic Constructs for Expressing Systolic Designs
W e now outline examples of syntactic forms for expressing some of the commonly occurTing
features of systolic algorithms e.g., regular interccnnection patterns, modes of progress of data
streams, and the loci of computations (a mathematical generalization of the notion of "wave
fronts” of a computation introduced in [26]). The details of the syntactic forms given here are by
‘no means unique or final, and will doubtless undergo change as our experiments progress. Our
objective is mainly toillustrate how specialized nderived” or "macro” forms may be developed to
suit specific interconnection topologies at hand. The presence of such macros some important
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advantages over the expanded/graphical forms in pattern matching and automated F
: transformation in that (1) there is a significant decrease in complexity in doing textual pattern ‘
i matching over doing graphical pattern matching (sublinear vs. quadratic or more); (2) the
absence of global ‘nter~deperidency of subcomputations in the iteration body is expiicit and does

not have to be inferred by global data flow analysis; (3) performance metrics can be easily

defined over such suctinct representations: this facilitates automated complexity computation,

r although o graphical representation (which is isomorphic) typically facilitates human .
computation /comprehension. '

3.3.1. Broadcasting
Ii Broadcasting a signal to a set of ports associated with some collection of processing elements
- is stated as .
| -
Broadcast(signal, Set_uf_lorts) ]I
Far example, the Set_ of— Forts may be a coliection of named ports of an array of similar 1
processing elements. 1
' Rough!y speaking, port names of cells may be viewed as entries of tasks associated with :
¥ them. Thus, ronsider a MULTIPLY - ADD_ CELL that accepts has 3 inputs (ports) a, b, and ¢,
and outpus a single value a*b+c We can describe a linear array of
MULTIPLY._ ADD_ CELL's which is useful in several systolic algorithms for matrix
computations, as i
1
MULTIPLY_ADD_CELLS: array(1..N) of MULTIPLY_ADD_CELL; .
,@ If we then want to state that x is broadcast to the N input ports named "a" of the array of
processing elements MULTIPLY _ ADD_ CELLS, we can express this as
| i'.
.,
]
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Broadcast(x, MULTIPLY_ADD_CELLS.a)

Note that this is identical to saying
for i in 1..N loop CONNECT (x,MULTIPLY_ADD_CELLS(i).a) end lgop;

This can be generalized in an obvious manner to mare complicated cases, including one
wherein the set of ports is computed dynamically.

3.4. Regular Interconnection Structures and Related O perations

W hen a set of processing clements have regular interconnections with their neighbors, it aids
comprehension and pattern matching if the "local” 4nd "global” parts of the interconnections
are stated succinctly (as opposed to specifying the dztailed interconnections).

W hile the components of en architecture is described by the set of interconnections between
the hardware modules it consists of, its functioning, or the computaticnal details of an
algorithm tailored to it invalves stating how input data streams move through the system, get
operated upon, and ultimately emerge as output streams. W e now give examples of these in
some standard settings. :

8.4.1. Linear Interconnections
A pipelined computation in linear interconnection of a set of cells can be expressed as '

Pipeline(Array, Direction, BoundaryConditions,
Set_of_Output_Ports, Set_of_lnput_Porta_of_Adjacant_Cel 1)

where Direction is either left—to-right or right—to-left, the BoundaryC onditions state what is
input at the left or right extreme port and what is to be done at the correspanding output, and
the pair of sets Set. of_ Output. Ports and set-of-input—ports specify the set of
complementary port names that detail which ports of adjacent cells are interconnected.

A's a specific example, we have

Pipeline (MULTIPLY_ADD_CELLS, LeftToRight, g,
MOLTIPLY_ADD_CELL (i).c, MULTIPLY_ADD_CELL(i+1). a)

or

Pipeline(MULTIPLY_ADD_CELLS, LeftToRight, 8,
MOLTIPLY_ADD_CELL.c, Right (MULTIPLY_ADD_CELL).a'

where Right(MM ULTIPLY - ADD - CELL)indicates the cell to the right of the ourrent cell in the
linear array.

Such constructs can be generalized. As an example, we next consider trec interconnections.

8.42. Tree Interconnections
As an example, we give the skeletal specification of the operations and workings of a

"Dictionary machine” that has the main computation performed by its leaf processors. Note
that the broadeasting process may itself be defined in terms cf a task (in A da).

task Dictionary

entry INSERT (x: in KEY; r1 in RECORD);
entry DELETE (k: in KEY);

T —_-1—-1_—1
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entry SEARCH(k: in KEY; r: out RECORD);
? entry UPDATE (k: in KEY; r: in RECDRD);
entry WIN_RECORO (r: out RECORD);

end;
task body Dictionary is

TREE: BinaryTree(DictionarySize, LeafProceasor,
b} : Internailode®rocasaocr);
-~ Thia proceaaor t~ae impiamanta tha Dictionary
-~ LeafProceeseor and InternaiProceceaor are 2
-~ types of procesaocre (“task typee") thit are
-~ used in instantiating the trees.

FunctionPort, KeyPort, RecordPort: Por¢;
-- FunctionPort represents the phyeicai iines
b3 -=- that activate tha function invokad and the
-~ 3inee nesded for tha requeet/acknouiedge protocos.
-- KeyPort and RecordPort repraaant the physicai
== iinae associated with k and r.

-- The aseociation between the iogicai ports and phyaicai porta
-~ le detajied beiou. The generai form of thie conetruct ie

== REPP“SENT (phyeicai-port-name, function-name, parametar-name)
-~ #uhi . etataes that tha "phyeicai-port-name” represente

~~ the -~parameter-name"” sescociated with "function-name”,

-= Thie wnabjea etatement of time muitipiexing of the 3inae.

REPRECEN 7 (KeyPort, INSERT, k);

REPRESENT (KeyPort, MIN_RECORO, k);

REPRESENT (RecordPort, INSERT, r);
REPRESENT (Recordfort, SEARCH, r);

| REPRESENT (RecordPort, UPDATE, r);

' REPRESENT (RecordPort, HIN_RECORD, r);

-- The interconnectiones to the giobai porte are deecribed belioun

CONNECT(Root (TREE).ANSWER, RecordPort);
CONNECT(Root (TREE’.KeyPort, KayPort);
CONNECT(Root (TREE).FunctionPort, FunctionPort);

¢ begin
: loop
select
accept SEARCH(k: in KEY; ri:out RECORD) do
Broadcast(k, r, Leata(TREE).SEARCH);

-~ dejay D(iog(DictionarySize))
-- thie ja done by making uee
-- of the internai node procasacra.

] -~ The “"Anawar” from the root ie
-~ connected to the giobai port
-=- correaponding to r.

end SEARCH;
end select;
€ end loop;
end Dictionary; b
A
task type Leafirocesscr is
3
imd o -
e " -
- —— Py WA =t Al B - BRI e ey
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entry INSERT (k3 in KEY; r: in RECDRD)
entry SEARCH (k3 im KEY)3

end LeatProcessor;
task body Leat{Processor is

LeatKey: KEY; —— This Is the local key.

LeatRecord: RECORD; —— This |s the record In the
—- laat processor, or @ code
-- Indicating that there is no
—- record at this leat.

begin
loop
select
accept SEARCH (k3 in KEY)
if LocalKey = K and DEFINED(LocNRocord)
then Fnhor.ﬂNsuER(Locl|Rocord);
end SERRC;{.
end select;
end loops;

end LeafProcessory

task type InternaiNodeProcessor is
entry INSERT (k: in KEY; r: in RECORD) ;

entry DELETE (ki im KEY);

entry ANSHER (AnswerFromLeftSon, ansusrFromRightSon: in RECORD;
CombinedRnswer: out RECORD);
end InternaiNodeProcessor;

task body InternalNodeProcessor is
begin
loop

select
accept SERRCH (k1 in KEY; ri:out RECORD) do

Broadcast(k, Sons.SEARCH)
delay 13

end SEARCH

ee e e

end select;
end loop;
end Dictionarys

3.5. Input and Output of Data Streams
The manner in which the data needed for a computation is input and output is of great

importance in designing highly concurrent algerithms. Succincts descriptions of such date
streams is therefore important, and also serves a dual purpese in aiding simulations much the
same way as do1/0 drivers in lower level drcuit simulations.

f: array(l..N) of BITS;
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INPUT(R); == Represents an array of bits Input In parailel
INPUT (SKEH(R, 1)), -=- Represents a rotated wavefront of bits
== where A(1) I8 input at time 1,

- R(2) Is Input at time 25 o[
-- and 30 on.

A dditional timing statements may similarly be incorporated. These forms can be expanded

in a natural manner to helr describe the operation of algorithms tailored to spedfic
architectures e.g. [10].

3.6. Distribution of Data. A Systolic Stack Implementation

Given an abstract specification, one of the important decisions in developing highly
concurrent designs relates to how the "data" components can be/are implemented in a
distributed fashion. In [26], we have developed a general technique for aiding such decisions,
which has been applied to the development of hardware implementations for matrix
manipulations, stacks, prirority queues, adders, symbol tables and a few graphics related
algorithms. Here, we illustrate how the result of the synthesis for a Stack may be couched
syntactically using the forms we have outlined above.

bo(Pomy PUSH Ko pusu Pusy 1= ;21"2"
| |ees . Cﬁ:l- e cfu ‘ céuL il
it ST S g I (20

Figure 3-6: A Systolic Stack Implementation

task SystolicStack is
entry INSERT(x: in Eienent);
entry DELETE (x: out Element);

== Rdditlonai "semantic annotations” spaclfy the behavior
-- of these to be that assoclated with the atstract data
== type "Stack". We omit these here for brevity.

end SystollcStack;

task body Systo!lcStack im

record
CellRrray: array(1..N) of PushCel |

end;
-- Local Interconnections

Connoct(Pu:hColI.SondLoit, Loft(Pu:hColl).lNSERT)g
== this Is a Right To
-- Left data transfer direction

Conncct(Putholl.GotFrolLof(, Loft(Pusthll).DELETE);
-- this is a Left to Right

- o e
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—— Boundary Conditions

Colifrray(N) . INSERT),

Connect (INSERT,
Ceiifirray(N).DELETE);

Connect (DELETE,

).GetFromLeft, UNDEFINED) ;

Connoct(Ccllﬂrrlg(l
).GetFromLett, 8);

Connect(Ceiifrray(l

begin
loop
select

accept INSERT (x: Eiement) do

Cotifrray(N) . INSERT(X);

end INSERT;
accept DELETE (x: oud do
Ccllﬂrrlg(N).DELETE(x);
end DELETE;
end sclect;
end loop;

end SystoilcSteck;

--------------.---—__—_—_..____..-—_——____.._...._..——_—-———__.._.._——___..

task type PushCell is
INSERT (x2

entry DELETE (x:
entry SendLett(x:
entry GetlLeft (x:

m Eiement);
out Eiement);
out Eiement);
in Element);

end;
task body PushCell is

CurrentEiement: Eiement;

begin
ement) do

ft(SendLeft(Current
—- transmitting curren
to left neighbor
Both these operations can be
done in 1 cycie using 8
2-phase ciocked fiip-fiop

accept INSERT (x: Ei

QutputTole Element));

t contents

CurrentEiement: =Xj

end INSERT;

Y

-= He for the other ports.

omit Inplononta(lon:

' end PushCelii;

[P e n———

3.7. Some Remarks

W e have outlined i

, be transformed to yi
! constructs that can

streams, and (the progresc of) loci of comp

merely examples of rmacro forms" that can
are neither unique nor final, and will doubtless undergo change a

The presence of such forms facilitates comprehension, reduces
matching needed to perform automatic transformations, an
data flow analysis that needs to be perfo

n this sectior. how some cdasses of iterativ

eld systolic designs. In addition,
be used to succinctly describe regular inter
utations. The exact syn

The details of the transformation strategy

e and recursive constructs may
ve have given examples of syntactic
connection patterns,
tactic forms described are

be defined in terms of other ex
s our experiments progress.

the complexity of
d also reduces greatly the amoun
rmed in order to achieve the same results.

for a more general class of specifications,

data

tant constructs; they

pattern
t of

and a
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mathematical basis for supporting such automated synthesis may be found in{26]. The
discussion there also elaborates on how the performance criteria, cost metrics and technology
constraints affect the synthesis strategies.

4. Conclusions

W e have detailed in the preceding sections the structure of an automated transformation
system geered to aid in designing systems that consist of a mixture of software compunents and
special purpose (VLSI) hardware components. In particular, we have indicated the mapping of
various syntactic constructs in Ada into hardware structures, and some other high level
constructs into systolic implementations. It is intended that these transformation tools be
based on the thecretical framework developed in [20), and therefore produce designs that are
formally verifiable.

An additional contribution has been to delineate syntactic forms that aid succinct
descriptions of special purpose architectures and aigorithms tailored to them. The design of
such constructs has been done to aid direct mapping into circuit layouts, and to reduce the
complexity of pattern matching involved in the transformation process. Such forms may be in
fact be viewed as "macrcs”, since they may be elaburated using the existing set of Ada
primitives. Unfortunately, however, the resulting expansions are sometimes quite clumsy and
obfuscating; on the other hand, a potential use of these expansions is in simulation of the
resnlting hardware using commercially available compilers for A da.

Finally, we have summarized some of the results of our preliminary empirical explorations in
using the transformation/synthesis methodology. The examples considered included various
classes of systolic algorithms and the hardware implementation of an Ada program fragment
using "path programmable logic"[20, 14} Our preliminary results have been quiie
encouraging, and have served to emphasize the importance of performance characteristics in
determining the global synthesis strategy. It has been estimated that the trade—off in using the
latter methodology for low level VLSI design results in about 10—20% increase in chip area
required (when compared with custom layouts), but results in a drastic reduction in the design
time (from a few months to a few days) [20]. "

A cknowledgements. W e gratefull)} acknowledge the feedback received on various aspects of
this work from our coileagues in the "A da~to-Silicon: project”, particularly Elliott Organick,

Tony Carter, Al Davis, Alan Hayes and Gary Lindstrom. Special thanks go to.

S.Purushothaman for porting the transformation system to run on the Vax.
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' Appendix

1. Hardware Implementation of a part of the Intemet Protocol: A Case Study

In this appendix, we summarize the results of applying the methodology detailed above in the
transformation of a fragment of an Ada program specifying the D epartment of D efense Internet
Protocol {18] into a hardware implementation. The Internet Protocol (henceforth referred to as
IP) is a communication protocol designed to enable packets to be transferred detween networks.
The function of the particular module that we consider here (called Read-. Init—~ Parameters) is
to read in the initialization parameters from the Memory Unit, and to send an
acknowledgement to the caller when it is done. The procedure shown below (Figure 4-1) is a
general procedure that achieves this while admitting a great deal of flexibility in the sizes of

various parameters.

Generation of the Circuit for Read . Init_ Parameters

The Ada program shown above is transformed using the methodology outlined earlier. For
the most part, it corresponds to a direct application of the strategies outlined in 2. Some of the
salient features resulting from the optimizations are described below.

The case statement, which constitutes the major portion of the <SequenceO fStatements>
part of the first loop is very highly specialized in that it simply checks the index variable of the |
loop and, depending on its value, chooses a variable that is loaded from a specific variable
J (octet— register). As a result this is implemented by using a multiplexor which is contralled by |

the loop variable.

' Since the variable "number_ of- tos— table— octets” is the product of two variables
"local - net_ type- of - service— row . size" and "number.. of— local - net.. types— of— service",
and is never used except in a final escape clause in thie second loop, we use two nested loops and

l do away with the multiplication altogether.

- The final target code is shown below. A symbolic description of the drcuit obtained fram this
by using the Assassin program [3]and laying out the data jaths is also shown here. This form
of the circuit can be directly transformed into a set of masks for fabrication, an instance of

which is also shown.
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separate (Inm_Out_Noduie.Inm_Out)
procedure Read_init_parameters(reeponee: out out_raeponea) is

procedure Hamory_requeet(

chunk_of_addreee_formai: chunk _of_addrees_type;
do_urite_formai: booiean;
octat_formai: out octat_type) i

renames Namory.Requeet;

octet_register: octat; |

begin
~~ Dounioad the & individuali initiaiization parametere. i

for index in1 .. 8 .
loop :
Hemory_request ( |
raquest_type_formai => receive_datum_octat, '
chunk_of_address_formal => don’t_care_X_datunm,
octet_forma; => octat_regietar);
case ndex is

whem 1 =D inm_max_packet(8) 1= octet_register; . . 1

whin 2 =D inm_max_packet(l) 1= octet_registar;

when 3 =D inm_addrees_iength 1= octet_register;

when 4 => inm_time_out(8) 1= octat_regieter;

when S => inm_timne_out(1) t= octet_regieter; s

when 6 => ack_type 1= octet _ragieter; 4

when 7 => locai_net_type_of_eervice table_rowu_eize ]-

. t= octet_regietar; '
when 8 =) number_of_jocal_net_types_of_service
" 1= octet_register; ’ e ]
endcaee; .
end loop; . ’ f
number _of_tor_tabie_octete 1= I
locai_net_type_of eervice_tabie_row_size *

nu.bor_of_locll_not_typoo_o(_tlrvlco; ) 1

for index in 1 .. number_of_loe_tabie_octete
loop
Hemory_requeet(
request_type_formai => receive_datum_octet,
chunk_of_addrase_formal =) don’ t_care_X_datum,
octat_formai => tos_table(index));
end locp;

end Raad_init_parametare;

Figure 4—1: Source Program for Read_ Init.. Parameters
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with TranstormationGenerics, NewBooiean;

procedure RIPTarget is

task RIPStart im
entry ReqRIP;
end RIPS tart;

task body RIPStart is

package InmNaxPacketlow
package innMaxPacketHigh
package inmAddreeslength
package innTimeOutlow
pr-kege inmTimeOutHigh
package inmAckType

package InmTOSTabieRouSize
package NoOfLocNatTOS
package
package TOSEntryCounter
package EntryDone

package T0SDone

package LooplDecoder
package TypeDiServiceTable

package TOSAddrassRegietar
package Controilnit is

tazk XIPStatel is
entry Nove2;
end RIPStatel;

task RIPState2 is
entry Nove3;
end RIPStata2;

task RIPState3 is
entry Novel;
entry Noved;
end RIPState3;

task RIPStatad is
entry Nove5;
end RIPStated;

task RIPState5 is
entry Noveb;
end RIPState5;

task RIPStatef im
entry Nove7;
end RIPStn-S;.

task RIPState7 is
entry HoveS;
entry Nove8;
end RIPState7;

task RIPState8 is
entry Nove5;
entry NovaSTRT;
end RIPStata8;

task body RIPStatal is
begi

accept Nove2() do

TOSSizeCounterPraiimReg

is new RAN

is new Cir

19

new Regieter(eiza => 8);
new Regieter(eize => 8);
new Ragister(eize => 8);
new Register(eize => 8);
new Register(eize => 8);
new Register(eize => 8);
new Register(eize => 8);
new Register(eiza => 8);
new Regieter(eize => 8);
new Register(eize => 8);
new EqComparator(eize => 8
new EqComparator(eize => 8
new Enlecoder(InputSize =>
(RddreeeSize =)> 8,

HordSize =>

4);
IncRegieter(eize => 8);

move (on(NemoryRequaet.fAck), to(RIPStataS2));

end Nove2;

T T T T EEr——,———




el e

T ——

t
¢
}
}
|
A
i

i3
:
I

hold (HemReq) ;
end RIPStatel;

tazsk body RIPState2 is

begin

accept Nove3d () do
move(on(NIL), to(RIPStete3));

end Move3;
reset(HemReq);
hold(LooplDecoder.Enable)

end RIPState2;

R T e ——

tazk body RIPState3 is :
begin
select
accept Hovel () do
move(on( NOT (HemoryRequest.Ack)) AND
NOT(DecoderCounter.Carry))),

to (RIPS tatel));
end Movel;

accept Hoved () do
move(on( NOT(HemoryRequest.Ack) RAND DecoderCounter.Carry)
to(RIPStated));

4

end Hoveé;
hold (TOSSIzeCounterPrelinRag.Inc);
end RIPState3;

tazk body RIPStated is

begin

accept Hove5() do
move(on(NIL), to(RIPState5));

end Nove5; . )
hold (7055 1zeCounterPralimReg.Cir);
hoid (TOSEntryCouvnter.Cir);
hold (TOSRddreeeRegieter.Cir);

end RIPStated;

task body RIPState5 is
begin
accept Move6() do
move(on(HemoryRequnet.RAck), to (RIPStateb));
end Hoveb;
hold (HemReagq);
end RIPState5;

tazk body RIPState§ is
begin
accept Hove7 () do
movelon(NIL), to(RIPState7));
end Nove7;
reset (HemRaq);
hold(TypeOfServicsTable.lrlte)
end RIPStatab;

tazk body RIPState7 is

begin

accept Hove8() do
novelon(NIL), to(RIPState8));

end flove8;
hold (TOSSizeCounterPrelImReg.Inc);
ho3d (TCSEntryCounter.Inc);
hoid(T0SAddreaeeRegister.Inc);

end RIPState7;

tazk body RIPState8 is
begin
select
accept fove5() do
aove (on(NOT(TOSDone)), to(RIPState5));

= - - ” I R e AW .




e raraes o mmm———y—g -~

B e

St B e Pt

c e seacs

e S——— W b - rm et T 8w

we—

end Cont

begin --

CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CDNNECT
CONNECT

CONNECT
CONNECT

CONNECT
CONNECT

CONNECT
CONNECT

CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CDNNECT
CONNECT
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end MoveS;
accept MoveSTRT() do

move (on(TOSOone), to(RIPStart));
end NoveSTRT;

hold(TOSSIzeCounterPreiimReg.Clir);
hold(TOSEntryCounter.Inc);
end RIPState8;

rolUnlit;
begin -~ body of task RIPStart

accept ReqRIP do

move (on (InmServar.Request), to (RIPStateSl));
end ReqRIP;
hoid(TDSSizeCounterPrel imReg.Cir);

end RIPStart;

Rody of procedure RIPTarget, speclfication of
interconnections

(HemoryRequest.Dutput (8..7), TypeOfServiceTable.Input(8..7));
(MemoryRequest.Dutput(8..7), InmMaxPacketlow.0ata(8..7));
(HemoryRequest.Output(8..7), InmHaxPacketHlIgh.Oata(8..7));
(HemoryRequest.Dutput(8..7), Inmflddresslength.0ata(8..7));
(HemoryRequest.Dutput(8..7), InmTimeDutlon.Data(9..7));
(HemoryRequest.Dutput(8..7), InmTimeOutHigh.Data(8..7));
(HemoryRequest.Dutput(8..7), InmAckType.Data(8..7));
(HemoryRequest.Output(8..7), InnTOSTabIoRouSlzc.Ontl(O..7));
(HemoryRequest.Output(8..7), NoOfLocNetTDS.Data(8..7));

(EntryOone.Inputl1(8..7), InmTosTubleRowSlze.00ta(8..7));
(EntryDone.Input2(8..7), TOSSlIzeCounterPrelImReg.Data(8..7));

(TDSDone. Inputl(8..7), NoDfLocNetTOS.Data(8..7));
(T0SOone. Inputl(8..7), TDSEntryCounter.Data(8..7));

(TypeDfServiceTabie.Address(8..7), TDSAddressRegister);

(LoopiDecoder.Input(8..2),
TDSSizeCounterPreilmReg.0ata(8..2));
{LooplDecodser.Output(8), InmHaxPacketlLowu.lLoad);
(Loopi0ecoder.Output(l), InmMaxPacketHigh.Load);
(Loopi0ecoder.Dutput(2), InmAddresstength.Load);
(LooplDecoder.Dutput(3), InmTimeOutlow.Load);
(LooplDecoder.Output(4), InmTimeDutHigh.Lnad);
(Loopl0ecoder.Output(5), InmAckType.load);
(LooplDecoder.Dutput(6), InmTOSTableRowSlze.Load);
(Loopl0ecoder.Dutput(7), NoDfLocNetTDS.Load);

end RIPTarget;

re—
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ABSTRACT

This report explores the contention that a high-order language specification of
a machine (such as an Ada program) can be methodically transformed into a
hardware representation of that machine. One series of well-defined steps

through which such transformations can take place is presented in this initial
study.

The general method consists of a two-fold strategy:

1. Transform the high~level specification into a network of inter-
communicating "state machine/data path pairs".

2. Through a catalogue method, map each state machine / data path pair
into a circuit realization.

Four representational levels are utilized in the transform=tion process. Each
inter-level transformation is discussed. The four levels are:

1. hde specification of the algorithm.

2. Machine-description specification of the algorithm, consisting of a
control part and a data part. This version is expressed in a
stylized dialect of Ada developed for this study.

3. Protocol-definition specification of the algorithm, obtained by
inserting constructs that define ipter-program unit communication.

4. Storage/Logic Array (SLA) specification of the algorithm, which can

be mapped directly to, and are regarded as equivalent to, circuit
representations.

Tne transformation strategy relies upon exploiting a one-to-one correspondence
between Ada instantiations of generic packages introduced in the level 2
representation and SLA "modules", which are composed of primitive SLA cells
introduced at level 4.

The transformation methodology described in the paper has been demonstrated for
a non-trivial Ada program example.

1. Introduction

This report reviews elementary principles applicable for methodically
transforming a high-order language specification of a machine, such as an Ada
program, into a hardware representation of that machine. In this initial study,

we discuss one series of well-defined steps through which such transformations
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can take place.

Research on automating Ada-to-Silicon transformations is currently underway
at the University of Utah {9]. In this report, which does not attemﬁt to
document the specifics of the mainstream of that research, we outline a series
of mappings for transforming individual Ada program units to equivalent
integrated circuits. Our emphasis is on the feasibility of these

transformations and 1s not concerned with finding a series of optimal

transformation steps. Our purpose is to:

1. Demonstrate cne (relatively straightforward) approach by which an Ada
program can be mapped into a specification of an integrated circuit :
(IC) through adherence to rule-based techniques.

2. Examine the pros and cons inherent in the most straigntforward, |
unoptimized approach.

Tne metnod presented follows the general transformation strategy suggested
earlier [8)j. The essence of this strategy is to represent each hda program unit
as a2 synchronous stored state machine part and a data path part. Circuits 1

derived by following this approach have the general form pictured in Figure 1-1.

Tne pairing of a state machine and a data path {i.e.. an environment) is
referred to as an "engine". The hardware realization of an entire Ada program,
or of any subset of program units of that program, is actuzlly a network of
asynchronously intercommunicating engines, each having the form outlined in
Figure 1-1, For the convenience of this report, individual Ada tasks are

considered to be program units.

A transformation methodology is just beginning to be explored (11]. There is
need to develop a well-defined set of rules through which such transformations
can eventually become a mechanical process. Some guidelines that distinguish a

set of rules as having the potential tor eventual automation have been\suggested

(101].
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Figure 1-1: An Engine and Its Two Principal Components

originaily outlined in the following sense:

level of representation from which integrated circuits may be produced directly.

in

. Not only is the high-level specification of a program unit expressed

in Ada; intermediate levels of representation are also expressed in
hca. "Machine-description" and "Protocol-definition" stvles of Ada
programming are proposed to express intermediate transformation
steps, permitting the algorithmic behavior to be checked through Ada
program execution at &ll intermediate levels as well as the top
level.

. NMOS Storage Logic Array (SLA) technology [15] [14]) is chosen for the

low-level realization of the machine. (More practical versions of
SLAs, called PPLs have been developed to serve as a target for this
transformation process [9).) SLA "modules" give us a set of building
blocks tnat fit the specific needs of this method. Utilization of
otner semi-custom integrated circuit components offers an opportunity
for enricnment of this methodology into the VLSI range.

tnis report, the four levels, counting the starting 1level, are called

"stzges". These stages are:

1. High-level Ada program
2. Machine-description Ada program
3. Protocol-definition Ada program

4., NMOS SLA program or equivalent

B Rt e ——- - et g

The transformations presented here are considered to be extensions of those

A4 nigh-order language Ada program is transformed in three steps to reach the



. asbama)

=

Characteristiszs of these stages and rules that guide the transformations
between them are presented in succeeding sections. A case study that was
performed following this method on a non-trivial Ada program is presented

elsewnere [6].

(We again stress that circuit optimization (space or speed) is not a goal
addressed in this paper. Thus, in situations where performance or circuit area
or both are critical, the approach presented is unlikely to yield circuits with
characteristics that are competitive with those produced by more custom methods,
especially for many important, but special algorithms, e.g., those that lead to

compact systolic arrays.)

2. Stage 1: High-Level Ada Program

The machines specified and realized by our transformation process are viewed
as ensembles of interacting state machine/environment pairs (engines). The
programming language Ada 1is well-suited for specifying such pairs. Thus, a
strong correlation exists between data abstractions in Ada and data abstractions

in certein views of integrated circuits; indeed we exploit this correlation.

An Ada program is composed of one or more program units (5] [2]). A program
begins execution as a single thread of control in the main subprogram, but can
initiate tasks, each of which nas associated with it a separate thread of
control. A program unit in this model is analogous to a machine that is
initiated via a single "Go" button, but which is capable of delegating work
among potentially concurrent sub-machines. In Ada, such sub-machines take the
form of Lasgs. hda alsoc offers flexibility and control in specifying the
communication between program units, i.e., in specifying the kind of interaction
petween units. Data abstractions represented as Ada packages, another form of
progran unit, are also transformable into individual engines whose operators
eitner transform given instances of a data type or own and operate on individual

instances. Shifting such an engine from idle to a particular active state
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corresponds, at a higher level of abstraction, to the activation of an Ada

i I package operation.

Information needed to represent an engine can be extracted from an Ada
program unit for use in representing the local environment (data path) and the
state machine (controller). This information is drawn both from the
specification part and from the body part of the program unit being mapped to

the next stage.

Stage 2 representation elaborates intra-program unit constructs while Stage 3

elaborates inter-program unit communication constructs. The language for Stage

2 is a stylized but legal form of Ada.

3. Stage 2: Machine-description-level Ada program

K Wi

3.1. The Role of Stage 2

A Stage 2 program achieves two objectives:

] 1. Ilnfers a collection of needed hardware modules from the declaration
part of the program unit and identifies the needed modules through
instantiation of generic packages.

2. Transforms infix expressions represented in the Stage 1 form into
prefix form. 1

The distinction between the control flow and data flow of a program is sharpened

by the transformation from Stage 1 to Stage 2. Thus, in its Stage 2 form, the

program takes tne form of a2 state machine and the data path it controls. The

declarative part of the Stage 2 form represents a collection of hardware modules
(2 "data path") inferred from the declarative part of the Stage 1 form. The

body part of the Stage 2 rorm represents a state machine whose structure is

inferred from both the declarative and body parts of the Stage 1 form. The

Stage 2 language style has two distinguishing features:

- extensive use of generic building blocks

b . e
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- use of the "engine :xtension" style of representing states and state
transitions

The terms "building block" and "module" have specific meanings below. A
"building block" refers to a generic package instance introduced in Stage 2 to
model a particular component of the data path. A "module" refers to a
collection of SLA cells from which the full ecircuit will be constructed. Every
generic package instance identified in the Stage 2 representation maps to a

corresponding Stage 4 SLA module.

3.2. Stage 2 Examples

Figure 3-1 is an example of a2 generic package deciarat.on for a building
block representing a counter. An instantiation of this package (e.g., "package
C is new Counter") corresponds to the module's "black box" representation (see
Figure 3-2). The SLA program that corresponds to Figure 3-2 is presented in
Figure 3-3.

generic
lo_value: integer;
hi_value: integer;
-- allows one to instantiate
-- counters of various sizes
package Counter is
-- Function:
- a counter with load, lookup,
- inerement, and decrement operations
procedure Load(
load_value: in integer );
procedure increment;
-- Increment by 1 is implied.
procedure Decrement;
-- Decrement by 1 is implied.
function Lookup return integer;
-- Returns tne current value,
end Counter;

Figure 3-1: Counter Building Block Package Specification

With a few exceptions (to be discussed below) all variables and operators in

the Stage 1 program unit are transformed into. instantiations of generic




IN ouT

LOAD [:
INCREMENT

DECREMENT f

| QCKlIP

Figure 3-2: "Black Box" Representation of a Counter Module

packzages. The Stage 2 code is then restricted to describing actions through the
use of these instantiated packapzes. Stage 1 to Stage 2 transformations result

in code that is composed primarily of function and procedure applications. For

exaxnple, a line of code such as
A =B + C;
is transformed into

L.write(Add.Go(B.Read, C.Read));

wnere h, B, C, and Add are previously instantiated packages. Thus, if the Stage

1 code includes the object declaration
A, B, C: integer;
tne corresponding Stage 2 form would exhibit the instantiations

package A is new Register(word_length => integer);
package B is new Register(word_length => integer);

package C is new Register(word_length => integer);
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000000000 1T1T1T11T1111 1
1234567890123 456789

1: -~ — — ~0BOBOBOBOB !;
2 N Hl " " ;;
3: ] n " n :;
Y. n ”" " ] l';
5: FBFBFBFB 1$ s
6: + 1 + HE
7: + 1+ HH
8: 1$ =+21$ i
9: =+ 1$n n :;
10: " nou :;
11: $R "o o n n oa n 001 0$ :;
12: LU L U U TR I s I I 1% :;
13: SR W W mowowQg Q1 0% ;;
14 $S LR O ) 1 1$ :;
15: $R " v w01 0$ I
16: $S M m g Q1 1% 1
17 $R " 001 0%$1;
18: $SM"O00 1Mz == o21$;
19: $08S w100 nglow o on ",
20: $0 S TR" 100 » nglonoam ".
21: $0 S TRI1TE"1T00 " nglom oo ",
22:80 S TR TR I1TRM" 100" nglwwnom,
23:$T R 1K T R 1R™ 100" ng!t n onon ",
24 $STR"O0 10 " nglomowonow :
25: $T ROSv"OD 10" ng L U T ;
26 TROSO0OS"p 100 ngltowonom n.
27: TR O0OSO0SOS"™0D 10" nglonwowow ",
28:=0=5202520=8=0=5 "=0=1z0=" n$| » » n u,
29: nonoa ",

Figure 3-3: SlA Program for Counter Module Using the SCLED Notation

Furtnermore, encountering "+" while parsing Stage 1 code would lead to the

inclusion of
package Add is new Adder;

in tne corresponding declarative part of the Stage 2 code. Hence, the code
presented in this example would eventually map into a hardware structure

~abstractly presented in Figure 3-4,

The design of the building block set and the design of the SLA module set
must be coordinated. As a possible means of enforcing the design discipline, a

Stage 2 programmer is provided with one or more packages that specify the set of

|
|
|
|
!
‘.
|
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READ C
STATE REGISTER
MACHINE
READ B
0000 ' REGISTER
000] e '
GO ADD
ADDER .
WRITE A
REGISTER

Figure 3-4: Hardware Realization of "A := B + C;"

generic packages available. The programmer can thereby be restricted to
expressing algorithms with instantiations and use cf the pre-defined generic

packages.

3.3. The "Engine" Extension to Ada

The body part of a Stage 2 program is sub-divided into states denoted by
labels. To represent the mutually independent actions that can oceur in the
same state of a state machine in standard Ada, one could use the "verbose form"
that declares (and then initiates) a set of dynamically created tasks. A more
succinct equivalent is possible if we were to include an "engine extension" for
hda to specify a similar objective. Used at Stage 2, the engine extension
allows one to specify a sequence of Ada statements that can be translated into

concurrent actions.

An engine clause has the structure illustrated in Figure 3-5. yithin the

scope of an engine clause, the sequence of statéments bounded by two state
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| engine Example is
begin
| <<State_Start>> -- initial actions
f -- executed in parallel

<<State_1>> -- actions to be
-- executed in parallel

<{<State_2>> -- another set ¢ actions which
~- can be executed in parallel

<{State_stop>> ~-- final state
null;
end Example;

Figure 3-5: Structure of an Engine Clause for Representing "Transition Graph"
of a State Machine

labels, e.g., <<State_1>> and <{State_2>> above, are actions that can occur in
parallel. Execution of a "goto" statement within such a (labeled) sequence

+rerminates the actions within that state (i.e., triggers a state transition).

, (To ennance readability, we follow the convention that the first node of every
engine clause be labeled "State_Start® and the final node be labeled ]

"State_Stop".)

) nesting of engines clauses follows Ada scoping rules. An engine may be
declared local to another engine just as one procedure can be declared local to
znother procedure. Thus a local "sub-engine" may be called from its containing

"main-engine". The effect of such a call is to transfer control to the label

P EI————.

State_Start of the subengine at the time the subengine is called and to return

control to the main engine wnen the subengine completes.

Note that this tecnhnique does not imply a relationship between state

transitions and units of time. Althougn the particular SLA implementation
chosen for Stage 4 in this work is synchronous, a syntax comparable to the
engine extension has been oe mapped to asynchronous implementations [4]. An
algorithm used to determine the operations for which one can specify parallel

execution, i.e., multiple actions within the same state, is presented in Section
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] 3.4, Building Blocks and Modules
For the purpose of tnis report, the following building blocks and modules
nave been designed [6): Equals, Less_eq, Bool_eq, Counter, Loop_Counter,

: Register, Boolean_Register, Memory, and Two_D_Memory.

Building blocks and modules generally have parameters for specifying word
lengths. Such specifications are provided by the Stage 2 programmer as part of
an interactive design process. Thus, most generic package declarations contain

the formal generic parameter

type word_length is ramge <

3.5. Tnree Intra-program Unit Communications Protocols

¢ Three different intra-program unit protocols are defined, corresponding to

]
: thé "function", "procedure", and "procedurE" Stage 2 subprogram declarations.

Tnese Stage 2 declarations convey assumptions about the number of states
required for an operation to "complete its job". Different protocols may be

utilized for invoking various operaticns within an implemented package. The

corresponding SLA implementation is invoked with whichever protocol is

appropriate. Protocols for communication between circuits ropresenting separate

Ada program units are discussed in Section 6.)

Operations are divided into two classes: those that return a value (e.g., a
Read operation) and those that do not (e.g., a Write operation). Hardware

implementation of the former requires that the module includes storage elements

I

t

I

E
to nold the value of the output parameter (or function result). The protocols
presented below ensure that such storage elements are sampled only after the
correct values are loaded. In operations that do not return a value, the

protocols ensure that the module completes its job {for example, modification of

a global value) before a potentially conflicting opération can be initiated.
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The distinguishing characteristics of operations adhering to each of the

three protocols are as follows:

- “Function" bprotocol: The operation completes in the same state in

which a request for the operation reaches the containing module. Two
cases are implementable:

1. The function result is always available.

¢. The request is received in phase Phi-1 of a given clock cycle,

and causes the result to be available in phase Phi-2 of the same
clock cycle.

P p—

A function operation (such as the Lookup operation on a Counter
module) does not need to issue an acknowledge to its requestor that it

has performed its duty, because it can be assumed that the correct
i result will be available ir a known state.

' - "Procedure™ protocol: The operation completes in the state immediately

following tne one in which the request reaches the module. As in the
function protocol, it is not necessary for the procedure operation
(such as the Increment operation on a Counter module) to inform the

| requestor tnat the desired action has been performed.

-~ "ProceduyrE" protocel: For this operation, it cannot be assumed that
| the job will be completed in the same state in which the request is
| received, or even in the next state. Unlike the two previous
| " protocols, it is necessary for the containing module to inform the

requestor when execution of the desired action has been completed.

The scenzrio is as follows: @ requestor initiates a procedurE
| operation by issuing a "Go" signal; the procedurE in turn signals its
caller, upon successful completien, with an "i'm done" signal. We
call tnis convention the "Go/I'm done" nrotocol. Its use allows the
introduction of arbitrary delzys in the state transitions for clocked
schemes that exhibit a single thread of control. The protocol, which
is enforced by construction, i: implemented as follows:

- E—— Y,

* Tne requesting engine K sends a "Go" signal that invokes the type :
procedurt operation P of z containing module M and then enters a
state wnere R waits for M to send an "I'm done" signal.

Tne initial state of M is a wait state for a "Go" signal. & Go
for P causes the states the operation P to commence (transition
to P). After the operation P completes M emits an "I'm done”
signal before returning to its initial state.

Tne protocol permits representation of a single thread of control that
traverses from the requesting engine R to the host module M of the
procedurtE operation P and back again. The sequence of state
transitions for every procedurE operation is local to one, and cnly
% one, engine. Hence, there is no possibility for contention. It is
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this fact that allows us to use the simple "Go/I'm Done" protocol
(instead of a somewhat more complex Request/Acknowledge) for intra-
engine communication. The Read and Write operations on the Memory
module are examples of the procedurE protocol.

4. Stage 1 to Stage 2 Transfermations

4.1ﬂ Transforming Simple Expressions

Simple expressions are transformed in a straightforward way. Registers
replace variables, comparators replace relational operators, adders replace plus

signs, etc. Such trarnsformations are syntax driven.

This style of transformation leads to the allocation of possibly redundant
modules. Clearly, circuits produced by this method tend to be wasteful of "rezl
estate". However, timing and communications are simplified in activating
individual modules, since each Stage 2 call on a subprogram operation of a
generic instantiation then corresponds to a unique control line in the nardware
level. Some simple optimizations are possible within this framework; for
example, use of counters where adders are not needed, and use of shift logie,

wnere cuitable, for multiplication or division.

4.2. Transforming Control Statements

The interpretation of control statements (e.g., loop, case, if, subprogram
calls and task entry calls) lead to control flow changes. We discuss the
required transformations for such constructs in thnis subsection on a case by
case pasis. In general, these transformations mimic well-understood strategies

used by compilers L1}.

Procedures, functions, aznd tesks The initial action to be performed in the

body parts of procedure, function, and task entries with in parameters is the

loading of the actual parameter values into the Registers that implement the

corresponding formal parameters. Statements directing such actions must be

- . > TR iy St I e



inserted into the Stage 2 program.

L)

Qut parameters also require instantiation of Register packages: so their
values can be loaded into these Registers as if they were local parameters and
hence mimic the "cop: -restore" parameter passing mechanism demanded (for the

normal case) by hda semantics. 4 similar treatment is required so that function

values can be properly returned.

Building blocks that represent formal parameters of program units are derived

l in Stage 2. For example, if procedure P and function F are specified as:

procedure P(
XX : integer; :
yy: integer);
function F(
zz: integer)
return real;

LA m— RN T WS

then four generic packages are instantiated:

package xx is new Register{word_lengtn => in integer);

1 2 packag. yy is new Register(word_length => in integer);
‘ -~ For P,
t package zz is new Register(word_length => in integer);
1 package f result is new xegister(word_length => real);
-- For F.
iF=STATEMENTS in the simplest case, if-statements are manifested in Stage 2

as structures of the form:

{<State_for_if>> if condition then
goto State_X;
else
goto State_Y;
end if;

v . —1F

Missing but implizit else clauses are explicitly inserted. For example:

else J
s goto State_<the_state_where_the_2_branches_Jjoin>;
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1t is certainly possible, and in many cases advisable, to include actions in

the branches Dbefore the goto statement, thereby reducing the total number of

states specified in the machine description. For example,

if mem_value = 0 then
pointer := p_find;

exit;
end if;
is transformed into
declare
equals_result: boolean := false; -~ Jnitialized to
cee ~- false.
begin

{<{State_U4>> Equals.Test(
Mem_value.Lookup(), 0, equals_result);
goto State_5;

KState_5>> if equals_result then
Pointer.Write(P_find.Lookup());

goto State_6; -~ Goes to exit.

else -~ Else is now explicit
goto State_T;

end if,;

Notice the use of the boolean varizble "equals_result" to represent the value of
tne condition. The rule followed is that the use of identifiers with "_result"
as a suffix specifies Stage U4 routing to a storage element that is located
within the module specified by tne prefix (e.g., Equals). The storage element
is loaded with the result of the operation. Every relational operator building
block has such a "buddy" boolean variable. Out parameters in procedures and
procedurts, such as the value returned from a memory Read procedurE, zare also

treated this way.

BLUCKS A block is treated as a parameterless procedure.

EOR-LOOPS A generic Loop_Counter package that computes and holds the loop -

parameter value 1is instantiated for each Stage 1 for-loop. This package also
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stores the value of the upper limit of the discrete range. 1n case the upper
bound is a previously declared variable, e.g., Lim, a module that stores Lim's
value already exists, so the extra Storage element :s redundant.’ This
redundancy 1is accepted because, at the hardware level, the simplicity of
communication and saving of extra communications lines appears to outweigh the
use of extra storage space. Figure 4-1 shows the Stage 1 to Stage 2

transformation paradigm used for for-loops.

STAGE 1 STAGE 2

-- Declaration part

package Parameter is new Loop_Counter;
-- Instantiation.

|
[}
:
]
|
|
|
:
]
1
i
| =-- Body part
i <<State_X>> Parameter.load (4, B);
i -~ Load loop values.
i -- A is initizl valvue.
i -- B is upper limit.
| <<State_Y>> if Parameter.Test() then
i -- Test the parameter
i -- versus upper bound.
for parameter in A..B | goto State Y+1;
| -- Go to the sequence
? -- of statements.
I else
i goto State_Z+1;
i -- Exit from loop.
| end if,;
| <<State_Y+1>> Statement_1;
[}
[}
i
[}
[}
|
|
¢
|
:
|
i
i
i
i

loop
Statement_1;

Statement_2;

{{State_Y+2>> Statement_2;
Statement_N; .

end loop; .
{{State_Y+N>> Statement_N;
<(State_Z>> Parameter.Increment();
goto State_Y;
-- Go back to the test.
<<{State_Z+1>>
-- Continue with the
-- rest of the program.
Figure 4-1: A Paradigm For-Loop Transformation
= - —— o~ TRes T WS T g uee s e T L TR T
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WHILE-LOOPS While-loop transformations require the instantiation of as many

building block packages as required to evaluate the while-loop condition. The

Stage 2 expression of a2 while-loop whose condition is a simple equality test is
modeled in Figure U-2.

{{State_Y>> Equals.Test(
first_operand, second_operand, equals_result);

goto State_Y+1;

({State_Y+1>> 1if equals_result then
goto State_Y+2;

else
goto State_Z+1; -- Exit the loop.
end if;
{{(State_Y+2>> Statement_1; -- Begin loop body.
(<{State_Y+i>> Statement_N; -- End loop body.

{(State_i>> goto State_Y;

<((3tete_2+1>> == ...rest of program

Figure 4-2: Stage 2 Representation of a While-Loop

5. Thoughts towards a compiler

Tne method Jjust presented informally emulates a mulii-pass compiler that

accepts as input a Stage { Ada program (i.e., a "normal" program confined only

by restrictions we may choose to impose on the use of Ada) and produces a Stage
2 program, wnicn is also legal, thougn "stylized" Ada code. This method is

weompiler-like" in the sense that it is syntax driven and in that the

transformations are viewed as production rules.

Tne Stage 1 to Stage 2 transformation involves several passes over a program

~unit. Backtracking within a given pass is sometimes necessary. For instance, 2

pass may begin Dy scanning the program unit and declaring the instantiation of

all generic package objects that can be determined at that time, and may end

witn the declaration of more package objects that have been determined to be

necessary while scanning tne code. The passes can be organized as follows:




¥

18\

- Pass 1 - Transforms the declaration part of the program unit and the
simple statements. Declares and instantiates packages that correspond
to formal parameters and inserts code to write the actual parameter
values into these packages. :

- Pass 2/Part A - Transforms compound statements, that is, loops, if

statements, accept statements and blocks. (Simple statements
"exposed" in this step are also transformed.) Records situations that
require backtracking. Also records situations that require new

packages to be instantiated.

- Pass 2/Part B - Backtracks and replaces "temporary" state markers with
appropriate state numbers.

- Pass 3 - Instantiates new packages whose need has been previously

recorded. Transforms expressions that involve relational operators
and expressions that similarly involve an increase in the number of
states.

5.1. Determining concurrency within a state

Determining which actions may take place in parallel is an important part of
tne methodology. Reasoning can be applied to specific cases based on the
function, procedure, and procedurE specifications. However, a general rule is

desirable. The following principles (constraints) are adhered to:

1. AU the Stage 2 level no two operations of a given package instance
may be called within a given state. This applies both to multiple
calls on a single subprogram contained in a generic package instance
and to single calls on different subprograms of the same package.
Thus, tne calls

Point.Load;
Point .Test;

must be invoked in separate states, whereas

Point .Load;

Slot.Test;
or

Point.Load;

Slot .Load;

may be jnitiated concurrently.

2. After receiving an appropriate "Go" signal, a module M (executing a
type procedurt operation) will not recognize another "Go" signal sent
from a module N until after M raises the matching "I'm done" signal.
If a module N were to send such a signal, its "Go" signal will be
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ignored and the action that N requests of M would never take place.
Furthermore, N runs the risk of mistakenly viewing the "I'm done"
signal M sends upon completion of the previous operation as intended
for N and will therefore proceed in error. )

3. The hardware modules developad in this report have no underlying
storage resource management: they allow for only one "activation
record” at a given time. Thus, overlapping invocations will result
in undefined behavior.

The rule is sufficient for our purposes to ensure proper behavior but no
claim is made that it is always necessary. (Note that Ada semantics permit
concurrent activations of operations within a package, although such
permissiveness can lead to non-deterministic behavior.) The fact that a unique
module is created in hardware for every variable, every computation (e.g.,
addition), and every comparison, suggests that control line conflicts will be

avoided as long as no module is presented with more than one command at a time.

6. Stage 3: Protocol-definition Ada program

An hda task defines a distinet thread of control. Ordinary subprogram calls
by a task T are regarded as traversals along this thread of control. Since
contention for subprogram activation has been eliminated by the constraints we
nave imposed, Go/I'm done protocols can be used safely in such cases. Inter-
task communication is more complex since two separate threads of control are
involved and since contention is possible. Suen communication is, therefore,
implemented witn a four-cycle Request/hAcknowledge protocol. Implementation
details for both kinds of communication are introduced in the transformation

from Stage 2 to Stage 3.

6.1. Motivation for Stage 3

Like its predecessor, tne Protocol-definition stage is specified in legal Ada
code. The discipline introduced in Section 3 is extended. The Protocol-

definition stage realizes two goals:

1. New states are inserted and "Line" packagés are instantiated to




20

specify protocols for communication between the program units
expressed in the Stage 1 code.

Note that the transformations presented thus far have been concerned
with communications within a given Stage 1 program unit. Since each
of the original program units maps into a unique state machine/data
path pair (engine), task entry calls, procedure calls, and function
calls between these units cannot be represented by simple control
line assertions. Instead, such communication must be implemented
either using Request/fcknowledge or Go/I'm Done protocols.

2. State label numbers are converted to binary numbers, primarily to
facilitate the encoding of the Stage 3 body part as an SLA state
machine, wnich takes place in Stage 4.

In the transformation to Stage 3, the list of declared hardware modules is
completed and the state machine is reduced to a sequence of if-statements, goto

statements, and subprogram czlls representing control line assertions.

-

6.2. lmplementing Inter-Program Unit Communications Protocols

Stage 3 inserts protocols only for those program units that are originally
specified in Stage 1. Protocols are already defined (in Stage 2) for program
units that are introduced as a result of building block generic package

instantiations.

In hardware .epresentation each inter-engine communication requires two
communications lines. Each linz (i.e., wire) is realized by the instantiation of

the generic package named "Line". The specification part for Line is:

generic
package Line is
procedure Lift;
-- Function:
-- Assigns the logical value 1.
procedure Lower;
-- Function:
-- Assigns the logical value 0.
function Test return boolean;
-- Function:
-- Returns true if wire has logical value 1,
- else returns false.
end Line;
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An instance of this package corresponds to a physical line whose level may be

lowered, raised, or tested.

©.2.1. Transforming Procedure and Function Calls

A procedure or function X is mapped from Stage 2 to Stage 3 as follows:

1. Line packages X.Go and X.Done are instantiated.

2. The decision "if X_Go.Test()" is inserted as the initial state. (The
machine remains in this state until X_Go.Test becomes true. Lines are
alvays initialized to the logical value 0, regarded here as false.)

5. "X_Done.Lift" is made the action of the final state. The state
machine of X takes the necessary actions to allow the caller to "see"
the return values at the sume time X_Done is sensed true.

Program units that contain procedure and function calls to other program units

must also be transformed to reflect the calling protocol. For example, the
action:
<(State_1>> X(some_arguments); -=- Call on X

goto State_z2;

is trensformed into:

((State_1>> X_Go.Lift;
X(some_arguments); -- The original action.
goto State_2;

{KState_2>> if X_pPone.Test then
-- Load the out parameters/function result
-- into proper register(s).
goto State_3;
else
goto State_2;
end if;

Notice tnat the original invocation of X is left in the code.

6.2.2. Transforming Task Entry Calls and Accept Statements

The transformation of tasks is similar to that for subprograms. The scheme
outlined in the previous subsection is followed, although "X_Req" is substituted

for "X_Go" and "X_Ack" is substituted for "X_Done". Additionally, a Line

. e s e et - e

'
L - e g g AT S g STV i




22

Package is instantiated for each entry statement of the task. This Line and the
X_Req Line are "raised" concurrently by the calling task (via a calls to the
respective Lift procedures). Each zccept alternative in the receiving task
tests the tasks request line and the corresponding entry statement line before
performing the desired operation. As an example, consider the task named
"Storage" that models a Read/Write memory. Storage is specified in Stage 1 as:
task Storage is
entry Read(

address: integer;
value: out integer);

entry Write(
address: integer;
value: integer);
end Storage;

The instantiations

* package Storage_Req is new Line;

package Storage_Ack is pew Line;
package Storage_Read is new Line;
package Storage_Write is new Line;

1 must be visible to Storage and all tasks which can call it.

The body of Storage is realized as:
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{{(State_0000>> if Storage_Read.Test() and
Storage_Req.Test() then
goto State_0001;
elsif Storage_Write.Test() and
Storage_Req.Test() then
gotc State_0100;
end if;

{(State_0001>> accept Read(

address: integer;
value: out integer)

do
-- Perform read operation.
-- This may take several steps
-- in the general case but nere
-- we simplify to one step.

end Read;

goto State_0010;

{{State_0010>> Storage_Read.Lower();
goto State_0110;

{<State_0100>> accept Write(
address: integer;

value: integer);
do

-~ Perform write operation .
end Write;

goto State_0101;

<<State_0101>> Storage_Write.Lower();
goto State_0110;

<<State_0110>> Storage_Ack.Lift();
-- Raise tne acknowledge line.
goto State_0111;

<(5tate_0111>> if Storage_Req.Test() then
-- Keep Ack nigh until Req is lowered.
Storage_hck.Lift();
goto State_0111;
else
Storage_Ack. Lower();
goto State_<some_next_stated;
end if; 1

/ E 5.
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A Stage 1 call on the Storage write operation such as

<{{State_U>> Storage.Write(

1,
Some_Value.Read());
goto State_5;

is realized in Stage 3 as:

<<State_1000>> Storage_Req.Lift(); -- Raise request line.
Storage_Write.Lift(); -- Raise write accept line.
Storage .Write(

1,
Some_Value .Read());
goto State_1001;

<<State_1001>> 4if Storage_Ack.Test() then

Storage_Req.Lower(); -- Test acknowledge line.
goto State_<some_next_stated;
else

Storage_Req.Lift();
goto State_1001;
end if;

Note thet the effects of these transformations are to:

1. Force tasks to follow standard Request/Acknowledge protocol.

2. Create an implicit case statement which directs the proper accept
alternative choice (e.g., State_0000 abcve).

o.5. Transformation to Binary Numbers

in Stage 4, states are encoded as a series of "0" and "1" cells that are
connected to SK flip-flops. For example, <<State_0110>> is realized by placing
now, mym, myn. and "0" cells in the same row (AND plane) in adjoining columns a
matrix called and SLA. The level associated with this row is "raised" whenever

tnat sequence of values 0110 is stored collectively in the flip-flops. We

regard ralsing this row's level as equivalent to being in State 0110,

To facilitate this encoding, state label numbers are transformed to binary

.

iepresentations as the last action of Stage 3. With the completion of the state
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expansions outlined earlier in this section, the state machine is fully

specified.

In summary, Stage 2 to Stage 3 transformations can be performed in two
passes. The first pass inserts the necessary state and package instantiations
to specify the communications protocols. The second pass converts the state

label numbers to binary numbers.

7. Stage 4: SLA Program

This section discusses SLA programs and their derivation from Stage 3.

!
1

7.1. Background and Use of SLA Programs

SLA 1s an acronym for Storage Logic Array. SLA methodology lends itself to 3
the realization of interacting state machine/environment pairs; they are used to
ﬁ describe both the state machine and the data path components. The SLA concept

was originally conceived by S. Patil [15] [14], extended by Patil and

welen L12J) L1535, and further extended by K. Smith [18]. Simply put, SLAs are
"folded" Programmable Logic Arrays (PLAs) in which column and row breaks in both
| tne AND and UR planes allow tne design of independent arrays in the same
‘ circuit. "Programming" an SLA involves the placement of symbolic elements (with
tne nelp of an editor) in a manner tnat may result in representing an arbitrary
number of independent finite state machines whose interconnection is specified
by tne SLA program. Tnese symbolic elements may then be automatically
translated into IC layout masks in the &appropriate circuit technology. The
translation of the SLA program into an integrated circuit can be viewed as the
I actual placement of finite SLA machines onto the active area of the chip. SLA
program: make it easy for the designer to visualize the physical layout of the
circuit from its logical description. A designer who thinks primarily in terms
of the functional description effectively specifies the physical layout as well.
Smitn and co-workers have designed SLAs in IZL, NMOS, and CMOS technologies

L18)J. More recent work by Smith's group has extehnded the SLAs based on a new o

" g < P s T T Y A . -
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concept for cell set design. The new circuits, called PPLs, are being primarily

applied in the design of asynchronous state machires [4].

Jur method uses SLAs in two ways:

1. The SLA modules previously developed are treated as hardware
components that replace the Stage 3 generic packages. Note that no
formal method is employed for the design of the SLA modules.
However, eacn module has been simulated independently to test its
correctness.

no

. The state machines, including control and feedback lines, are encoded
as SLAs [13].

we use SLA cells to build a library of composite "macros", which are the
Stage 4 modules described in Section 3. These modules comprise the data path
and are inserted using a cell substitution approach. 1In this sense our use of

SLAs is similar to the use of macro cells [3] and Associative Logic [7].

The particular cell set employed in this work was the 5 micron NMOS set
described in [17). An SLA editor (SCLED (20]) and a SL& simu’ctor (NSIM {19])

were built and tested at Utah; both were used extensively in this study.

7.2. Encoding of State Machines

The OStage 3 specification of a state, say, State 0110, results in the
connection of tne appropriate SLA cells such that the Tow corresponding to State
0110 goes nigh at the proper time. Further, in each state the levels on columns
"connected" Lo the row of a given state are raised when the SLA is in that
state. Tnese columns are the sources of the control lines, which correspond to
tne operations to be initiated in that state. & two-pass method is employed to
accomplish tne desired encoding. This technique is presented by referring to a

simple example. Consider the Stage 1 if-statement construct:

T i . il
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if A =B then

C:=C+ 1

else [
A := B+ 1

end if;

With the assumptions that "A" maps into a Register while "B" and "C" map into

Counters, this construct could be specified in Stage 3 as:

{<State_0000>> Equals.Go(A.Read, B.Lookup, equals_result);
goto State_0001;

(3tatre_00071>> if equals_result then
goto State_0010;
else
goto State_0011;
end if;

<{State_0010>> C.increment;
goto State_0110;

f KState_0011>> B.Increment;
goto State_0100;

State_0100>> A.Write(B. Lookur};
goto State_0101;

e ——— o

<<State_0101>> B.Decrement;
goto State_0110;

| <KScate_0110>> null;

in the first pass, the states of Stage 3 are scanned sequentially. Every
function and procedure call on a generic package instantiation in Stage 3 is
transformed into the raising of z control line when tne row corresponding to the
given state "goes high". If-statement:. are transformed into two rows, one fer
eacn possible result of the if. The state machine layout rules employed are:
1. For simplicity, columns representing test inputs and control line
outputs that are used to communicate witn other state machines

(program units) are placed on the left of the state machine and those
that communicate to local modules are placed on the right.

; 2. Rows and columns are annexed as needed as the Stage 3 states are
scanned. When a new Stage 3 subprogram call is discovered, a column
is designated teo carry the corresponding control line.

gt gy v e g
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Figure 7-1 presents the result of the initial encoding pass over the Stage 3

code presented above.

0000O0OO0O0COO0OO0D000U0VLDO O
000000000 1T1T1T1111
123456789012345%5%
wWF F F F O0OBOBOBDO B;
2: p
38 H
4: H
5: H
6 :
7: 0 0 0 0S + + + 4
38: 0 0 0S 1RO H
9: 0 0 0S1 1 H
10: 0 0S1 0O + ;
1: 0 0OS1R1R + ;
12: 0 1 0 0S + +
13: 0 1 6S 1R +;
14: 0 1 1 0 s
"1 01 1 1! t-=> B.Decrement
bbb e===> AlWrite
T T T T S > B.Increment
R R > C.Increment
T T . > B.Lookup
R . > A.Read
T — > Equals.Go
| mm—————- result from Equals
Figure 7-1: First Pass Stage 4 Encoding
Note how state 0000 (row 7) raises columns 10, 11, and 12. This row
corresponds to the "Equals.Go(Ah.Read, B.Lookup,...)" operations specified for

state 0000 in the Stage 3 code above. State 0001 (rows 8 and 9) corresponds to
the if-statement. How 8 '"goes hign" if the result frow the comparator carried
in columzn 9 is false (i.e. a /= b). Row 9 goes high if the result is true (a =
b). Note how new columns are added on the right as new procedure and function

calls are scanned in the Stage 3 code. Note also how the B.Lookup (column 12)

~is raised in State 0000 (row 7) and in State 0100 (row 12). The second time

"B.Lookup” is scanned in the Stage 3 code we remember that a column was already
dedicated to this control line; we don't dedicate another. Since this simple

circuit does not communicate with other state machines, all control line firings

are on the right side.
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In the first pass the “+", "i", and "O" cells are placed only as the need for
tnem is discovered. A dispersec layout often results. The second manual pass
re-arranges the control lines to group lines that are directed to the same
moduie. Thus, the second pass merely clusters the control lines, arranging them
according to their destination. The effect of the second pass is to simplify
routing of the control lines to the modules. Figure 7-2 presents the result of
re-arranging of the columns of Figure 7-1. Note how commands going to the same

module are now on adjacent columns.

0000C00000O0O0O0OOO0CDOD
000000O0C001T1T1T1T1T 11
1235456789012 345¢6
1 F F F F OBOBOEOB;
2: i
3: ;
L H
ok ;
6: .
7: 0 0 0 0S + + + H
b: O 0 0S1TRO 5
5: 0 0 0S81 1 :
0: 0 051 0 +;
1M1: 6 0S 1K 1R .
1220 1 0 03 + o+ :
13: 0 1 0S 1R +
W: 0 1 1 0 :
"1 11 11t 1==> C.Increment
i1 1 1 1 1 |=-=--=> B.Decrement
R R T > B.Increment
R e > B.Lookup
A et > A.Write
N > A.Read
e el > Equeals.Go
I
1

-------- result from Equezls

Figure 7-2: Second Pass Stage 4 Encoding

. 7.3. Layout, Routing and Busing Issues

An algorithmic method for cell layout and routing has not yet been
incorporated into our method. Reference [6] discusses a simple manual routing
method tnat utilizes the fact that the declaration part of a given Stage 3

program unit specifies the modules utilized by that unit.

. / .
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As mentioned earlier, engines that are physical representations of tasks
communicate through the use of the Request/Acknowledge protocol. In the
hardware rea.m, such engines communicate via buses. A circuit cerived by our
method may include several buses, which may be private (non-contenciqn) or
public (with potential for contention between the users). Both types support
the Request/Acknowledge protocol. It is well-known that a Request/Acknowledge
protocol strategy will not work on a contention bus without some sort of

arbitration mechanism. The Request/Acknowledge protocol implemented here

closely follows the scheme outlined by Seitz [16], and appears to be adaptable

to his arbitration scheme. Bus issues are detailed further in [6].

8. Conclusions

The transformation methodology described in the preceeding sections was
developed and exercised in conjunction with an extensive and non-trivial case
study (6]. The algorithm developed for that exercise is a possible model for
the behavior of the Ada selective wait statement, itself initially specified as
an Ada program consisting of a set of intercommunicating Ada server and
requestor tasks. Tne transformation rules were only applied to a subset of the
prograzn. Application of the rules resulted in two SLA programs whose behavior

was tested with the simulator hS1M.

Tne case study (6J provided a "real" example of rule-based transformations
wnicn covers the significant portion of the Ada-to-Silicon "spectrum”. No
theoretical stumbling blocks were encountered in this process, which suggests
that there 1is nothing in principle to invalidate the concept that such
transformetions mav be automated. On the other hand, we have not yet formalized
these transformation rules as concrete algorithms. There is the additional

challenge of reaching practical and competitive circuits with this approach.

“e have experimented the intriguing concept of using Ada itself as ar

intermediate language in the mapping process. For this purpose we have found
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important ways to exploit Ada's abstraction features:

1. In mapping Ada program variables to instantiztions of generic
packages to pre-defined IC modules.

2. In mapping Ada subprogram and task calls to specific hardware
protocols.

Tne end result of successful research in this area can be that the
traditional hardware logic design activity will become increasingly a
programming activity that is Kkeyed to the use of high-order programming
languages for syster specification. Such an evolution will progress, however,

only as rapidly as we succeed in evolving a new class of high-quality compilers

for hardware.
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Abstract

This describes the status of the Internet Protocol (IP) example being , ursued as a case study
by the Utah Ada to Silicon Project. This document provides three contributions: (1) A general
introduction to the Internet Protocol for those unfamiliar with it, (2) A discussion and "road
map" through the structure of the Ada code that specifies the submodule representing IP,
which we have named INM_ OUT, and (3) A complete listing of the source Ada code for
INM_ OUT that is beirig used to guide the transformation of this submodule into silicon.
Parts 1 and 2 summarize the function of the IP and our majar design decisions.

Other references [2, 3, 4] also include discussions of the IP case study and our approach to
mapping the IP into silicon. The source listings in part 3 have been compiled using the Intel
432 2 da compiler version available to us at this time. We have coded the romplete
INM_ OUT submodule in A da and have succeeded in compiling most of it for execution on the
Intel {APX 432 system except for statements and declarations associated with uses of the Ade
rendezvous construct.

[As later versions of the Intel compiler become available, we expect not only tc be able to
compile the full module using rendezvous syntax and semantics, but to execute it in this mode
aswell. In the meantime we are working with a version of the code, not given in this report,
that simulates each rendezvous via Send/Receive primitives instantiated through use of the
Ada generic package mechanism.]
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1. What is the Internet Protocol?

The IP is one level in a hierarchy of protocols designed to provide a uniform means of
transmitting messages from one computer system ("Host") to another, over an interconnected
system of networks (or "nets"). We term each of ‘he Individual networks a "local net", even
though such a net could be worldwide in scale, as is the Arpanet. The overall assemblage of
these networks Is called the internetwork, or "Catenet’. H osts directly interfacing to two or
more local nets are called "gateways".

The primary reference for the IP is [5]). Quotations 8ppearing in this document without
explicit attribution are taken from this reference.

1.1. Protocol Hierarchies

It is important to understand the IP's position in the protocol hierarchy, as well as what it
means at all to speak of a protocol hierarchy. Fig. 1-1 depicts this layering, where TCP stands
for Transmission Control Protocol [6], the most common Protecol above the IP, and LNP stands
for local net protocol, w hich we leave unspecified here.

1 TCP |
R +
| 1P |
Femen e c e e e m e caaa o +
| LNP |
D T U +
| 1ine protoco] |
tveeececccccccccaaaaa +

Figure 1-1: Protoco] layering.

Depending on one's perspective, there are several ways of looking at protocol layering:

conceptual (or real) framework for organizing an implementation into modules
each performing a language mapping function. For example, we will use the
terms T ransmission Control M odule (TCM ), Internet Protocol M odule (INM), and
Local Net Module (LNM ) to refer to the separate modules (actual or conceptual)
implementing the TCP, IP, and local net protocol, respectively.

3. Division of duties: Correspondingly, the modules at each level accompllsh certaln
duties in support of the particular leve] of abstraction they implement. For
example, we shall see that an INM acconiplishes its packet size abstraction by
implementing a message fragmentation and reassembly process.

4. Nested enwloping: Still another vlewpoint, which we develop further in section
2.2, focuses on the "wrapping" of additional layers of control information
("headers") on messages as they descend In the protocol hierarchy, and the
corresponding "upwrapping” as they rise. At each level, the sending and
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receiving modules communlcate through parameters packed In the headers of
data passed to the next level.

1.2. The Role of the IP

The IP fundamentally provides a means of transmitting uninterpreted messages (segments)
between Hosts on possibly different local nets. The INMs accomplish this transmission by
packaging these segments in special data blocks termed datagrams, for transmission via one
or more local nets.

In performlng its part of this internetwork service, the IP is concerned with two principal
duties:

1. Internet addressing: picking the desired "next hop” gateway for nonlocal
messages. and

2. Pragmentation and reassembly: splitting and merging messages that cannut be
transmitted intact due to inadequate local net packet sizes.

These duties can be explained metaphorically as follows. The IP functions like a
department-to-department mail service within an industrial organization. Each department
has a mail room, which deals with one or more courier services. W hen someone in a source
department has an item to send to another department, he or she wraps it in an unmarked
folder and deposits it In an out basket of the local mail reom, with a delivery slip attached
giving instructions.

The mail room prepares the folder for transmittal by inserting it into a company mail
envelope, with the delivery instructions written on its exterior. It then selects a courier
serving the destination department’s mail room, and glves the envelope to the service's egent.
The agent then puts the company mail envelope into one of the service's own standard
envelopes, and enters it into its shipping system. At the destination the process is reversed:
the courier agent strips off the courier service envelope and delivers it to the mail room, which
in turn recreates a delivery slip from the instructions on the company mail envelope, strips of
the company maeil envelope and, puts the folder (with dellvery slip attached) into one of the
department’s in baskets. The in basket is selected according standing processing instructions,
based on the contents of delivery slips.

However, two complications may arise in accomplishing this folder transmittal:

1. The courier services available to the source mail room may not directly service
the destination department. In this case, the mail room determines a (remote)
oourier service directly serving the destination, and looks the service's name up
in a reuting table. This table gives the name of a department whose mail room
has agreed to transfer mail to the destination department, as well as the name of
a courier directly serving the transfer department. The source mail room then
gives its company mail envelope to the shared courier service, which conveys it to
the transfer department's mail rcom. The envelope is then relayed out via
another courier service, which the transfer mail room determines according to its
own routing table.

2. The second difficulty may be that the given folder slze exceeds the capacity of
largest envelope available from the selected courier service. In this case, the
mail room takes the liberty of partitionlng the folder's contents so that each
portion will fit into a service envelope. However, before passing each partion to
the courier agent, it marks on the portion's company mail envelope that portion’'s
sequential position in the original folder. This permits the portions to be
reassembled into ane folder in the destination mail room.

This thinly disguised analogy maps into the IP world as follows:
—A depariment 1s a Host, and a courier service Is a local net.

—A mail room isan INM, and each courier agentisan LNM.
—A polder is a data segment for transmission over the catenet.
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—An out basket 1s a SEND wull, and an in basket is a RECV call. Delivery alips
are SEND /RECY call parameters.

—~Each piece of company matl 1s a datagram if it contains a complete segment, and a
(datagram) fragment otherwise. (For convenience, we consider unfragmented
datagrams to be "fragments" as well.)

— T'ransfer mail rooms are gateways. ' 5
—Finally, a courier mail envelope is of course a local net packet.

(End of postal terminology, and resumption of Postel terminology.)

1.3. The TCM INM Relationship

The manner by which the TCM communicates with the INM is not standardized. Fowever,
the 1P manual [5] illustrates one possible implemenlation through a pair of procedure calls
SEND and RECV.

The sending TCM issues an INM call of the form
SEND(src, dst, ..., BUIPTR, len, ...)

when it wishes {o send a segment to a destination Host. Parameters src and dst give the
Internet addresses of the source Host (presumably itself) and destination Host, respectively.
Internet addresses are silmply the concatenation of & net number and a Host nuinber. The
segment to be transmitted is of length len (in B-bit bytes, or "octets"), and may be found in
memory location BufPTR. (Omitted parameters will be discussed in sectlon 2.1.)

If all goes well, this segment will be presented in due course to the TCM at the destination
Host. It takes delivery of the incoming segment by completing a mating RECV call on Its
INM, which we assume was awaiting its arrival:

RECV(BufPTR, .., src,dst, .. len, ..),

w here src, dst, and len are value—returning ("OUT") parameters, and BufPTR provides a
pointer to a preallocated segment buffe- In the receiving TCM. Although dstls an OUT
parameter, we may assume that all segments delivered will have dst equal to the Host's
Internet address. Note that all through traffic at a gateway is handled by its INM wlthout
Involvement with the Host's higher level protocols (i.e. without TCM QEND /RECY

handling).
The TCM, for its part, implements several higher-level aspects of the internet

communication process:

—reliability (e.g. acknowledgements and retransmissions);

—error control at the segment level (i.e. checksumming T CP headers, etc);

—flow control (controlling the rate at w hich segments are delivered to the INM);

—multiplexlng (management of multi—-purpose segments);

—connections (reserved portions of transmission capacity), and

—precedence and security (managing degrees of urgency and confidentiality of
segments).

1.4. The INM LNM R-zlationship
The Interface between the INM and LNM is not specified in [S]. One may speculate,
however, that 1t could follow the general form of the SEND/RECYV calls at the TCM—-INM

interface.

That is, when an INM has a fragment to send out on a local net, it issues a SEND call in the
net's LNM as follows:
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SEND (src— In,dst_In, ..., FBufPTR, Flen)

Parameters src.. In and dst_. In give the numbers of the sending and target Hosts on thia net.
itecall dst_ In will designate either this fragment’s Internet destination Host, or the Host
serving as its next gateway. FBufPTR and Flen indicate the memory location and extent of
the fragment constructed by the INM .

Delivery of local net packets by LNMs at target Hosts is accomplished by completion of an
INM call (which again we assume is waiting) of the form:

RECV(FBufPTR, ...,src_ In, dst_ In, Flen),

where src_ In, dst_ In, and Flen are OUT parameters serving the obvious functions

It is useful to note the communication functions provided by LNMs:
—packet formation and transmission;
—local net status controi,
—routing of packets within each local net.

2. A CloserLook at IP Functionality

2.1. TCM Interface
The full parameterization of the SEND /RECV calls at the TCM~INM interface is as
follows.

SEND(src, dst, prot, TOS, TTL, BufPTR, len, Id, DF, opt, OUT result)

—sre, dst: Internet source and destination addresses.

—prot: the next level protocal in effect (e.g. at the TCM level). Several of these have
already been assigned (see [7]): TCP, for instance, has assigned number €

—TOS: type of service (normal, high throughput, etc.) requested by the TCM .

—TTL: time to live, a time (in seconds) after which the datagram derived from this
segment can "self—destruct” if not delivered (see section 2.5).

—BufPTR, len: TCM segment pointers.

—1d: segment identification tag, for reassembling fragments derived from this
segment (see section 2.5).

—DF: a "don't fragment’ switch.
—opt: options to be okserved in transmitling the segment (see section 2.8).

—result: an OUT parameter in {OK, error; OK = "datagram sent ok"; error =
"error in arguments, or local network error”.

The corresponding RECV call issned by the TCM at the destination Host has a similar
parameterization:

RECV (BufPTR, prot,
OUT result, OUT src, OUT dst, OUT TOS, OUT len, OUT opt)

The purpose of these parameters should be evident from consideration of the corresponding
SEND parameters. Note, however, that twoare IN (read-only):

—BufPTR: a pointer to buffer preallocated by the TCM for receipt of the incoming
segment.

—prot: an indication of which higher level protocol version this RECV call can
accommodate.
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2.2. Datagram Formatting
A's mentioned in section 1.1, a fruitful way of looking at protocol layering is to consider the
levels of envelope nesting that surrounds the raw data transmitted. This is illustrated in tig.

e-1.
D il Lk L T Sy, + mcreccrdaindcaccnccc e e ca—_.
LNM parameters | 1local net header I ~
bttt bl DL LT LT Mt L L PP PP packet
INM parameters | IP header | ~
M= e MR e e T fragment
TCM parameters | TCP header { N
A R T T e = S 3 Segment
| data buffer { v v v
B kL LT e I, Ay Uy U

Figure 2-1: Data enveloping.

Since we are concerned primarily with the IP level, it is useful to look in more detail at the
format of an [P fragment (see fig. 2—2).

0 1 2 3
0123!567890123!561890123!5678901

{Vars & {IHLs 8 {Type of Se-vios! Total Length = 576 ] -
1 Toantifiesiion o 111 {F1g20! Fragment Offaet s 0 |

T_A Time = 123 | Proto;ol -_E_? Headar ohackaum _.-; ri;::out
; source addresa {

; dastination addresa { v

{ Opt. Cods = x | Opt. Len.s 3 { option value | 0;;. Cods = x | i
Ifapt. Len, = § | Vvoption valus { Cpt. Coda s 1} fu::rdl
T O ot oy O o e 3 1 option value | Opt. Coda = 0 | v

{ data { -

\ \

\ \ ona or more
{ data { octets
{ data -; v

Many of these fields are directly transferred from corresponding SEND parameters.
However, a few bear dlarification:

—Ver: version of the IP header layout.
—IHL: total header length, in multiples of 4 octets (32 bit words).

—Type of service: a one—octet encoding of the type of service which the datagram
should be given en route to its destination. (This encoding is apt to be mapped to
other representations as the datagram moves first ‘o the local net level and then
to other networks en route to the destinatin network.)

—Total length: total length of the datagram, in octets.

—Flg: three bits bgb; by, where by must be zero, by= 1 iff the datagram should not be
fragmented, and by= 1 iff this fragment is not the final one of its datagram.

—Fragment Offset gives the position of this fragment’s message data within its
original segment, in units of 8 octets (64 bits). The first fragment of a datagram
has offset zero.
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—Header checksum: from [5), p. 14:

"The checksum field is the 18 bit one's complement of the one's comp]ement.sum of all 18

bit words in the header. For purposes of computing the checksum, the value of
the checksum field is zero.”

2.3. The Intemet Addressing Function

Internet addresses actually have three formats, providing for a few nets with relatively
many Hosts, and many nets with relatively few Hosts. These formats are:

=—Class A: a lead 0, followed by a 7-bit net name, followed by a 21-bit Host name.
—Class B: a lead 10, followed by a 14-bit net name, followed by a 16-bit Host name.

—Class C: a lead 110, followed by a 21-bit net name, followed by an 8-bit Host
name.

Several Class A network names have already been assigned [7].

As mentioned in section 1.2, the INM addressing function deals only with outgoing

datagrams, and amounts to picking the target Host on the next local net. This will involve use
of:

1. A gateway table, which will need to be updated periodically to reflect long term
additions and deletions of nets to the Internet system, as well as shorter term
changes in gateway availabilities.

2. Use of spedific routing instructions, as given in the datagram options (see section
2.6).

2.4. Fragmentation

Fragmentation occurs on outgoing datagrams which will not fit into a single local net
packet. Note that fragment headers can be constructed without examination of the data
segment to be transmitted. This means that a buffer the size of a local net packet could suffice
for fragmentation if space is at a premium. The IP specification [5] gives an example
fragmentation procedure (p. 26).

2.5. Reassembly
The IP specification also gives an illustrative reassembly algorithm (p. 28). The key points
from our perspective are the following:

—Reassembly is done only at Internet destinations, and not at gateways or other
intermediate Hosts (since we cannot be sure all fragments derived from a given
datagram will follow the same routing).

—Datagram fragments are reunited on the basis of a key formed from four fields of
the fragment headers: source, destination, protocol, and identifization. Sending
TCMs must choose identification fields such that this 4~tuple is unique
throughout the Internet system for the lifetime of a datagram.

—Strangely enough, fragment headers do not include the overall size of a
(reassembled) datagram. Hence preailocation of a complete buffer for each
incoming datagram is not generally feasible, unless either a small limit is imposed
on incoming datagram size, or the datagram arrival rate is assumed to be low.

—Various anomalies can occur in the arrival of fragments, e.g. duplications,
reorderings, and omissions. The INM is free to handle these however it wishes,
except that fragments with headers that fail the checksum test must be destroyed.
Fragments are "aged" by decrementing their TTL field as they pass through the
Internet system. Each INM handling a fragment charges its processing time, with
a minimum of one (second) each. Presumably, the TTL for a datagram under
reassembly is the minimum of the TTLs for its delivered fragments W hen this
TTL reaches zero, the partially formed datagram is destroyed, and the buffer is
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released.

2.6. Options
O ptions indicate special handling for datagrams, as requested by the sending TCM. The use
of options is opticnal, but their implementation is mandatory.

The essential opticns are summarized below, omitting “null-options” such as no—ops,
padding, etc. An asterisk indicates that the option is copied in every derived fragment.

—*Security: for sending ''security, compartmentalization, handling restrictions, and
TCC (closed user group) parameters”.

—*Loose Source and Record Route (LSRR} for specifying a series of internet
addresses through which a datagram is to be routed. The routine is loose because
"the gateway or Host IP is allowed to use any route of any number of other
intermediate gateways to reach the next address in the route”. The route is
recorded in the sense that a pointer packaged as part of the option is advanced as
each intermediate address is reached.

—*Strict Source and Record Route (SSRR) similar to LSRR, except that "the
gateway or Host IP must send the datagram directly to the next address in the
source route through only the directly connected network indicated in the next
address to reach the next gateway or Host specified in the route.”

—Record Route: requires each INM handling the fragment tv concatenate its
address into the space allocated for this option (if sufficient space remains).

—*Stream Identifier: "provides a way for the 16-bit SATNET stream identifier to
be carried through networks that do not support the stream concept.”

—Internet Timestamp: indicates that each INM handling the fragment should
concatenate its time of receipt (in milliseconds since midnight UT) into the space
allocated for this option.

2.7. Internet Control Message Protocol (ICMP)
The INM must implement special protocol that is companrion to the IP for reporting errors in
datagram transmission and requesting special INM services. This protocol, termed the ICMP

[8], is mandated as follows:

"ICM P uses the basic squort of IP as if it were & higher level protocol, however, ICUP is
actually an integral part of I[P, and must be implemented in every IP module.”

ICMP datagrams may be recognized by INMs through the special prot=1 header
indication. For obvious reasons, ICMP datagrams are not sent regarding errors in delivering
ICM P datagrams. Briefly, their varieties are as follows:

1. Destination unreachable: a receiving gateway could not transfer a datagram,
or a don't fragment request could not be honored.

2. Time exceeded: a first fragment, or unfragmented datagram, was
superannuated.

3. Parameter problem: a datagram header was found to be malformed.

4, Source quench: a destination Host requests a slower rate of transmission from a
source Host.

5. Redirect: a gateway advises a Host not to route traffic to a particular distant net
through it.

6. Echo or echo reply: used to 'reflect” dategrams back from destinations to
sources, for testing purposes.

7. Timestamp or timestamp reply: similar to echo and e-lio reply, but with a
destination timestamp.

8. Information or information reply: used for querying "what network is this?".
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3. Current Design
¥ e summarize here the principal features of the AtoS approach to implementing the INM,

as well as remarks on the current status of that implementation.

3.1. Major Design Decisions
There have been two majcr design decisions thus far.

1. The first is to split the INM into three submodules: an INM . OUT dealing with
traffic outbound on a given local net, an INM_ IN similarly handling inbound
traffic, and an INM_ SRV tying them together and interfacing to the Host(s).
W e envision one INM _ IN and INM _ OUT pair for each local net interface, but
only one INM . SRV per INM.

2. The second decision is to use a two—-phase A da rendezvous to implement both the
upper (TCM) and lower level (LNM) interfaces. In each case, a task call is
performed by the initiator of the data transfer action, with the receiver servicing
the transfer through an appropriate entry. When the data transferred has been
fully processed, a reciprocal rendezvous takes place (with call and entry roles
reversed) to report the success or failure of that processing. [An alternative
formulation, based on passing messages via ports such as is done in the 1432
architecture, is also under consideration.]

Division of functional responsibilities:

1. INM. SRV:

a. Receive segments from and deliver segments to TCMs in the Host(s)
served.

b. A ccept incoming segments from the INM _ INs, and
i. deliver via local Host RECYV calls all segments so addressed, and

ii. (if implementing a geteway) route to appropriate INM_ OUTs all
through traffic.

c. Maintain a gateway transfer table, used to route all outbound segments
(whether from a local Host or neighboring INM . IN). If an outbound
segment has a non-local net name in its destination address, that net
name is used as a key to select the appropriate next gateway directly
reachable by a local net served.

d. Implement ICM P message generation and transfer.
e. Handle options:

i. Security: reject all classified traffic, perhaps with an ICMP report
of "destination unreachable".

ii. LSRR, 55RR, and record route.

iii. Timestamping: (.ote this requires e time of day service,
presumably from the TCM ).

[Note that all message traffic through the INM_ SRV is in segment form;
datagram (or fragment) form is used solely within INM . IN and INM_ QUT
submodules.]

2. INM_OUT:
a. Form fragments frcm segments received from INM . SRV,

b. Deliver fragments to the LNM_ OUT of its assigned local net, along with
their local net addresses (final or gateway), as provided by INM . SRV.

c. Map the Internet type of service parameter to an appropriate local net
type of service, or reject fragment if this is not possible.

3. INM_IN: ‘
a. Receive fragments from the LNM _ IN of its assigned local net.
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b. Reasjsemble fragments into complete datagrams (destination fragments
only). .

c. Delete overage and erroneous fragments (note this requires a timing pulse
at least once each second).
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4. Ada Specifications forINM_ OUT A Road Map
The INM _ OUT module, whose functicnality is described in the preceding section, has been
~specified in full in Ada code. The purpose of this section is to review the structural
organization of this code as a set of interrelated A da packages, embedded tasks, and auxiliary
procedures. The code itself is listed in the A ppend:x as a series of 14 separate compilation
units.

4.1. Communication between INM_ O UT and its "neighbor” modules

To better understand the code organization, it is useful first to visualize the communicatior:
channels that are assumed to exist between INM_ OUT and other modules [1). These
channels suggest the important intertask communication of the A da code to be described.
Recognition of these channels determines the gross organization of the code that embodies this
modular organization. Figure 4—1 shows the channels not only between INM_ OUT and its
"neighbors”, but also identifies two other important channels that are assumed to exist; the
latter, however, are not detailed within the code to be described.

| INM_SRV J{rRARRA AR RN RN AR | MEMORY |
| | |
I ~
v |
___________________ |
I | |
i R e T T
I I
I INM_OUT I
I I
! e L L L EE R R R
| | |
------------------- |
| v
I -------------------
I |
I | FIFO |
I |
I -------------------
I ~
I »
v »
| |
| LNM_OUT |

Figure 4-1: Communication channels (tasking interfaces) between INM_ QUT
and its "neighbor modules”. Directed arcs indicate direction
of intertask requests (A da entry calls). A rcs composed of ;
asterisks (*) represent assumed communication channels that
are not now modeled in the Ada code.

Discussion in the preceding section has already explained the role of the INM _ SRV and
LNM_OUT modules. The module marked "MEMORY" is, depending on the specific )
implementation, either a memory to which INM _ SRV and INM —~ OUT have shared access or
a control unit that governs access to some such memory unit. The module marked FIFO is
assumed to be a hardware unit functioning as a first-in~first—out queue. O utbound datagram
fragments are passed through the FIFO module to LNM_ OUT. The FIFO must be capable of
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holding at ieast one (maximum-sized) datagram fragment. The module is assumed to operate
under asynchronous and independent control; it can be fabricated either as a separate IC or
assembled from off-the-shelf ICs.

The arrowheads in Figure 4—1 indicate direction of intermodule requests, which are
specifiable in Ada as task entry calls. Ada task entry calls can specify transmission of both
inbound and outbound information. Completion of the rendezvous initiated by an Ade task
entry call can therefore have the effect of boih sending data to the callee and receiving data
from the callee. Even though such a "transaction” may always be initiated by a particular
party (the caller), message information on the channel can flow in one or both directions, as a
result of a singie call (request).

Thus, INM_ OUT receives requests from INM _ SRV and issues requests to LNM_ OUT as
well as to FIFO and to MEMORY. Depending on the nature of these requests, message
information flows either to or from INM_ QUT. or in both directions. These detaiis are
specified in the code itself.

Requests from INM _ SRV toINM _ OUT are of two kinds:

1. Messages for the purpose of providing INM_ OUT with initialization
information. An initialization request is a message that supplies INM_ QUT
with a pointer to iocate and acquire, via MEMORY, the actual initialization
values.

2. Messages that request transmission of datagrams. A transmission request
contains a pointer which INM_ OUT can use to locate and acquire, via
MEMORY, the actual datagram prepared (or transshipped) by INM _ SRV.

A message request from INM _ OUT to MEM ORY may either supply. MEMORY with a
pointer value or receive from MEM ORY a data value.

A datagram fragment is sent by INM_OUT in the form of a message request to the FIFQ
unit. INM_ OUT uses the channel to LNM _ QUT to issue requestis for confirmation that the
latter has received a datagram via the FIFO. In a like manner, the channel from INM .. SRV
and INM_ OUT is used by the former to obtain confirmation that the latter has correctly
processed the preceding request.

The channels between INM_ SRV and MEMORY, while important to the operation of
INM_ SRV, are not relevant to the current discussion.

4.2. Package and task structure of the corresponding Ada code

In the Ada code, each of the modules discussed in connection with Figure 4-1 is modelled by
a package, the principal one for our purposes being the package for INM _ OUT which Is
named Inm_ Out_ M odule. Both the specification part and the body part of
Inm_ Out— Module have been coded. By contrast, it is only necessary for our purposec to
supply the specification parts for the LNM _ OUT, FIFO, and MEM ORY modules, since only
the specification parts are relevant in the design of INM_ OUT. By similar reasoning, since
INM - SRV issues entry calls into INM _ OUT and not vice versa, it is unnecessary to consider
even the specification part of INM _ SRYV; for this reason, there is no package representing
INM_ SRV in the code section displayed in this report.

4.3. Definition packages

The full Ada code for INM _ OUT, in the form of an Ada package, has been dellberately
composed with certain declarative Information factored out; the factored infarmation takes the
form of a hierarchy of three (auxiliary) definition packages. These packages contain type
information (type and subtype declarations and their corresponding representatlon clauses, if
any) as well as constant information (constant declarations); these declarations are expected to
be common to either INM _ 0% [ or to INM . SRV, or to both when these modules are encoded
as Ada packages sometime in the future. Thus, the "root” definition pa~kage Is named
In_ Out_ Srv_ Defs, because the contained declarative Information 1s common to all three
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parts of the Internet Module; the subsidiary package Inm. In_ Out_ Defs contains
declarative information common to both INM_IN and INM_ OUT and depends on the
dedlarative information in In_ Out. Srv_ Defs. Finally, the definition package named
Inm_ Out.. Defs contains declarative information of relevance only to INM_ OUT and to the
modules LNM_ OUT, MEMORY, and FIFO) to which it makes requests for service. Figure
4-2 shows the full dependency graph that has resulted from this decision to factor out common
declarative information. The graph also reveals that the packages representing MEMORY,
FIFO, and LNM _ 0UT modules have also been specified to depend on certain of the deﬁnit:cn
packages.

-

|
| In_Out_Srv_Defs |
| |

A A

: Inm_In_Out_Defs |
|

~
|
|
|
|
|
|
|
|
|

|

>
_________.__-____ >

~
|
|
|
|
|
|
|
—l
|
|
|
|
|
|
|
|
|
|
N

|, Local_Net_ |
|  Module |
- swm wem |

X
[
3
o
el
<
1l
=4
[
a
[ =4
—
o

| Fifo_Module |
N |

—_— e, e —_— e — = )

11 |
Il Inm_Out_Module |
(N |

Figure 4-2: Graph illustrating the dependence of the module packages on
certain auxiliary definition packages.
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4.4. Tesks defined within the nm_ Out_ Module package
Three tasks are declared within the Inm_ Out.. Module package.

1.The main task, named Inm_ Out, interfaces with INM_ SRV and with
LNM. OUT such that a pipeline effect is achieved for speeding datagrams along
the outbound data path: Host module —> INM_ SRV —> INM_ OUT —>
LNM_OUT.

2. An auxiliary (server) task, named Read_ Init_ Parameters, which obtains from
host-related memary the initial parameter values needed to perform1 datagram
transmission.

3. An auxiliary task named Translate_ TOS_ Task, which operates in parallel with
INM_OUT, the main task, by translating type-of-service information from
hustevel to local-net level encoding.

The specifications for these three tasks are found in the specification part of
Inm- Out_ Module. The body parts of these three tasks are represented as stubs in the body
part of Inm_ Out_ Module and the actual body parts of these tasks are listed in separate
compilation units. (See Figure 4-3.)

Inm_Out_Module

- = - - - - - - - - - - - . . - = . - - -

| The main task |
|

Fead_In{t_Parametars

|
|
|
!
|
|
|
|
|
Auxiliary task | |
|
|
!
|
|
|
|
|
|

Translate_TOS_Task

! Auxilfary task |

Figure 4-3: The three tasks embedded in Inm_ Out_. M odule.

4.5. Important iocal precedures of Inm_. Out_ Module

Acitivity initiated within the main task (Inm. Out) is delegated in two ways: (a) by entry
calls to Read_ Init_ Parameters, and (b) by calls to one "principal” procedure defined in the
body part of the containing package (Inm— Out_ M odule). This procedure is: D o-send, v:hich
in turn issues calls on other three others procedures, locally define (in Do_ send. These are.
Read_ in_ header, Compact_ Options and Send_ fragment. The respective purpose of each of
these principal and subsidiary procedures is spelled out in the commentary of their respective
spedification parts which are found in the specification part of Do_ send. The body parts of
these procedures are represented as stubs in the body part of Do_ send and appear as separate
compilations units in the listed code.
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4.6. Section summary

This ends our short description, or "road map"” through the code proper.

page 16

There are 14

separate compilation units given in the A ppendix. These are:

1.
2.
3.

In_Out_Srv _Defs
Inm_In_Out_Defs
Inm_Dut_Pefs

4. Memory_Modu!e

5. Fifo_Module

6. Local_Net_Module
7. Inm_Dut_Module

8. Inm_Out

9. Read_lnit_Parameters
18. Translate_TOS_Task
11. Do_send

12. Read_in _header
13. Compact_options
14. Send_fragment

Top-level definition package.
Second-level definition package.
Second-level definition package.

Auxiliary module package.
Auxiliary module package.
Auxiliary module package.

The main package.
The main task.

Auxiliary task used by the
main task, Inm_Out.

Auxiliary task used by the
procedure Read_in_header.

Procedure local to Inm_Out_Module
called by Inm_Dut.

Procedure local to Inm_Out_Module.
called by Do_send.

Procedure local to Inm_Out_Module
called by Do_send.

Procedure local to Inm_Out_fodule
called by Do_send. '

I

St —




R R A —

- —

——— o W

¢vy

Ada Specifications for the Dod Internet Protocol:

The INM_ OUT Submodule ReportNo. 1 page 17
Appendix

-- Rda-to-Siiicon Projsct -

- liniversity of Utah: , ==

-- DoD Intsrnet Protocoi INMN_OUT eubmoduis -

- Rda cods for the top-isvsi dsfinition pPackags named: -

-- In_Out_Srv._Defs --

- Vsrsion of Novsabsr 1, 1982 -

Package In_Out_Srv_Dsfs is

-- Function:
-- This packags contains dsfinitions nssdsd by ths INN_IN, INN_OUT, and

- INN_SRV moduisc.

-=- Ussfui bit-fisid typss.

subtype bitl is intsgsr range 8..1;
subtype bit3 ig intsgsr range 8..7;

subtype bit4 is intsger range 0..15;

subtype bit8 ijs intsgsr range 8..255;

subtype bit13 is intsgsr range 8..8191;

subtype bitl6 is intsgsr range 8..65535;

subtype bit21 is intsgsr range 8..2897151;

subtype bit24 is intsger range 8..16777215;

subtype bit32 is intsgsr range 8..4294967295; .
shiftls constant : = 2;

shift3: constant : = 8;

shifté: constant : = 16;

shiftS: constant : = 32;

shiftbs constant : = 64;

shift8: constant : = 256;

shiftl3: constant : = 8192;

shiftlb: constant : = 65536;

subtype octst_typs is bit8;

type octst _buffsr_typs is array(intsgsr range <>) of octst_typs;

-- The foiiowing code had besn addsd to maks ths unchecksd conversion routines
== work. Normaiiy ths dsfauit storags ( in ths 1432 ) for intsgsre that ars
-- iess than or equai to 16 bits is a short ordinai (16 bit fisid).

-- So, normaiiy convsrting & rscord of 2 bit8 intsgsrs to & bitlf

== integsr wouid bs squivaisnt to trying to stuff 2 short ordinais

~- Into a singis short ordinai. Ths rsprsssntation spscifications fix thie

-= probisnm.

-~ Rsprsssntation spscifications ssction.
byts : constant intsger 1= 8;
for bitl’sizs 1;

Jor bit3’size 3;
for bitd’size nuse 4;

§§

for bit8’sizs wuse lsbyts;
for bitl3’eizs use lsbyts + 5;

for bitl6’eize use 2sbyte;

for bit21'sizs use 2sbyts + 5;

for bit24’sizs use 3sbyte;

for bit32'sizs use debyts;

end In_Out_Srv_Dsts;
- . T r— S S
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with ln_Dut_Srv_ths;

use ln_Dut_Srv_ths;

Submodule

Dol Intsrnst Protocoi

lntnr-sdlato-lov:l ds

Vsrsion of Novsmbsr 1,

Report No. 1

Rda-to-Siiicon Projsct .
University of Utah: :

INn_puT Subnhoduie

finition
Inm_ In_Out_ Defs

Packags namad:

Package Inm_In_py t_Dsfs iy

-- Function;:
This definition
ths INN_DUT ang

lax_htadtr_lsngth:
nax_tng-tnt_ltngth:

htadtr_buff:r_lou_addrttt:
holdor_buffcr‘hlgh_addrosst

Packags contains dsfinitions usegq by both
INN_IN moduiss.

INN data for cormunication with servsr

constant : = 64;
constant 1 = 2 55 316 _ 28; - Arbitrary.
constant : = 8;

constant : = max_hsadsr_iength - 1;

subtype hsadsr_ptr jig intsger range headsr_buffsr_
headsr_buffgp

subtype hold:r_octtt_buff.r_tgpo

lou_addrsss
_hlgh_addrolt;

is octtt_buflor_tgpt(hoadtr_ptr);

subtype hoad-r_longth_tgpo iz intsgsr range 8 .. hoad-r_bulf-r_hlgh_nddrcss
- htldtr_bulf-r_lou_lddrals + 13
type tuo_octst_recorgd is
record
fo: octst_type;
his octst_type;
end record;
type h-ad-r_buffor_tgpt is
record
vsrsion: bitd;
IHL: bitd;
typa_of_ssrvice: bits;
totll_ltngth: tuo_oetot_r:cord;
ldtntlflcltlon: tuo_octtt_rtcord;
tiags: bit3;
fragmsnt_offsgt; bitl3;
tims_to_iivs; bit8;
protocois bitg;
htldlr_chsck:u-: tuo_oct:t_rtcord;

octet _buffspr;

end record;

flr:t_chtck:un_byt-:
tteond_chocksun_bgto:

INN data for Communication with

oct:t_hulf:r_tgpo(lz hoadtr_bufftr_hl
-- Ths first sight of
== consists of;

Source_address:

dlltlnatlon_addrlsl:

gh_ld1ra:-)|
thsss octats

- -

bit32;
bit32;

LNN
constant : = g,
constant ; = 11;
e '
s — ARWURs s
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max_inm_packet: constant : = 128; -- Dctete (arbitrary).

-- ??2?2????2?? E.I.D. B76???
subtype header_worde i3 integar range 5 .. 16; -- Header ifength in words.
subtype header_octate im Integer range 28 .. 64; -- Haader jangth In worde.

== Functione:
functicn "xor"(
firet_operand: octet_type;
eecond_operand: octet_type)
return octet_type;

function "xor " (
operandl: tWo_octet_re~ord;
operand2: two_cctet_record)
return two_octet_record;

function Maek (
number_to_be_maeked_formai: integer;
mask_formai: integer)
return integer;
=~ Function:
- Performs a bit wizse AND operation on
- the tuo paeeed parameters and returne the integer resuit.

function Shifr _right(
nudier_to_be_shifted: integer;
shift_dietance: integer range 1 .. 15)
return integer;

== Function: Does equivaient of integer divide of number_to_be_ehifted
-= by 2 % shift_dietance returning the equivaient of the quotient
=- on uneigned {poeitive) integere.

-~ Repreeentation specificatione section.

for t4o_octet_record use
record
lo at @ range 8 .. 7;
hi atl range 8 .. 7;
end record;

end Inm_In_Dut_Defe;
package body In_Out_Defe :is
function "xor"(

firet_operand: bit8;
eecond_operand: bit8)

return bit8
== Function:
- Returne the Exciusive DR of tuo octets.
-- The foilowing impiementation eervee as 3 eoftuare guida only.
is
rasuit, eavea, eaveb: bit8;
abit, bbit: bit8;
begin
eavaa := firet_operand;
saveb := eecond_operand;
reeult := 8;
== Initiailzation.
for index in 8 .. 7 : ‘ i
loop
—‘-—_':. — 3 0‘-1'“--' I:v‘ . e i Lal i
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ablt eavea rem ehlftl; -= Get the ieaet
-- elgnificant bit.

bblt saveb rem ehlftl; -- Get the leaet
-- ei1gniticant bit.

eavea : Shitt_right(eavea, 1); == Strip oft the least
-= eignlificant bit.

eaveb Shift_right(eaveb, 1); -= Strip off the least
-- eignificant bit.

if mot abit = bbit then -=- Add the currant xor bits
-= to the reesulit.

resuit 1= resuit + ehiftl s Index;
erl if;
end loop;
return reesult;
end;

function "xor*(
operandl: tuwo_octet_record;
operandl: tuo_octet_record)
return two_octet_record
== Functlon:
Forme the excluslive OR for corresponding octete of tuo
two_octet_operands. Ueee above declared "xor™ function.
I hope thle ie legai Ada. (Gary: Pleaes check). MWe uee
thie functlion when performing checkeumming on the fuil 16-blt
checkeume which are repreeented as tuo_octet_recordes.
is
resuld: two_octet_record;
begin .
reeuit.lo : = operardl.io xor operand2.io;
result.hl 3= operendl.hl xor operand2.hi;
return reeul t;
end;

function Maek (
number _to_be_masked_formal: integer;
maek formal: integer)

return Integer

- The fcllouing implementation eerves ae a eoftware gulde only.
is
firet _number : integer;
second_number : integer;
raeult 1 integer;
index t Integer;
mask ing_done : booisan;
begin

-- Initlailze varlabise.

firs:_number 1= number_to_mask_{fornal;
eecond_number := mask_formai;

reesult 1= 83

Index 1= 83

maeking_done := falee;

-- Do & blt by bit AND of both numbers etarting from the
-- low order bit.

while not mask ing_done
loop
== Teet to eee If both low order bits.

if (firet_numbar rem 2) = 1 and (second_number rem 2) =

-= Add the current bit into the result.
reeuit 1= result + 2 &3 index;
end if;
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-= Take off the lou order bit from both numbere.

first_number := Shift_right(firet_number, 1);
eecond_number 1= Shift_right(eecond_number, 2);

=- If either number |e 2zero then we are done.

if (firet_number = 8) or (eecond_number = 8) then
maeking_done 1= true;

else -- increment index
index := index + 1;

end if;

end loop;
return reeulit;
end maek;

function Shift_right(
number_to_be_shi fted: integer;
shift_dietance: integer rangel .. 15)
return integer
- The foiiowing implementation eervee ae a eoftuare guide oniy.
is
begin
return numher_to_be_ehifted / ehift_dietance;
end Shift_right;

end In_Out_Defe;
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- Ada-to-Sliicon Project -

-- University of Utah: --

- Do0 Internst Protocoi INH_OUT submoduie -

- fda code for the Intermediate-level definition package named: --

-- Inm_ Out. Defs -

-- Version of November 1, 1982 --

with In_Out_Srv_Defs, Inm_In_Out_Defs;
use In_Out_Srv_Defs, Inm_In_Out_Defs ;
package Inm_Out_Defs is

-=- Function:

-- This package contains dafinitions used in th= iNA_OUT moduie
-- and the units to Wwhich it interfaces.

=le Block Ofagram of Anticipated Hardware Realfzatfon

| )
-- | INM_SRV Kmssss ====="""5= >1 MEMORY |
| | |

I
|
|
|
|
I
I
== : INM_DUT |
I
|
|
I
I

L
L}
]
L}
]
]
[}
]
]
1
]
]
]
]
i
1
L]
]

== | LN INTERFACE |

-- Constants: -
max_tos_tabie_size: constant integer 1= 4 -= In octets.

T . . |
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-=- Actual size depends on

~=- avaliable space In the

~~ harduara representation.

max_local_net_tos_byte_aize: constant integer 1= 2;

-=- Nax number of octets requirad
~=- to represent the local nat T0S.
-~ Ne assume that 16 bita Is mora
-- than sufficient to ancode tha
-~ local net tos.

~- (S5tili not sure we need
-~ this conatant. E.I.D.)
ear ly_sck: constant integar :1 = 8;
late_ack: constant integer := 1;
segment_Jow_address: constant : = 8;
segment _high_addresa: constant : = max_segment_length - 1;

-- Types used for intertask communication:
x: constant Integer := 4; -- Data path uidths: chunk of address.
-- SRV -> DUT and OUT -> MENMORY.

~- Communication between the
~- INA_DUT and MENDRY moduies.

subtype chunk _of_address_type is Integer range 8 .. 2 s¢ x - 1;
-~ Piece of start address for a dategranm.
-- Each plece has x bits.

typs memory_request_type is(
load_address,
receive_datum_octat);

-~ Communication between
~- INH_SRV and INM_DUT modulss.

type srv_command is(

init_1,

Init_2,

init_3,

Init_4,

Init 5, -=- Not currentiy used.
Init_§ ~-- Not currentiy used.
init_7, -~ Not currentiy used.
send,

test);

y: constant integer := 4; -~ Data path width:
-~ OUT -> SRV.

type out_response is(

sent_ok,

dont_fragment _error,

unsupported_tos,

bad_header,

bad_srv_command,

local_net_time_out,

local_net_error,

other);

-- Communication among the
-- INH_OUT, LNM_OUT &nd FIFD modulea.

€: constant : = 4; -=- Data path midths OUT -> LN.

type locai_net_command_type is(receive_fragment); -- Currantiy a set of ona.

t: constant : = 4; -- Data path width: In -> out.
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type iocai_net_reeponse_type is(
fragment _received_ok,
fragment_not_received);

u: constant : = 4; -~ Data path width: INB_OUT -> FIFO.

type fifo_command_type iz
reset,
stnre,
retrieve);

-- Representation c'auses.
for memory_request_type wuse(
ioad_addrese => 8,
receive_datum_octet => 1)

-- Rrbitrary choice. Harduare
-- impiementers may choose the reverses.

for srv_command use(
init_1l =>
init_2
init_3
init_4
init_5
i.it_6
init_7
send
test

-

ONONSWN =
e w e % w ow

VVVVVVVYV

for out_respones usel(
sent_ok
dont_fragment_error
i uneupported_tos
bad_headear
bad_srv_command
iocai_net_time_out
] iocai_net_srror
other

nuwnumunnann
VVVVYVYVVYV
W W W e W w -

NOUIEWN - ®

for iocai_net_command_type use(
receive_fragment => 8);

for iocai_net_response_type usel

1 fragment_received_ok =>8,
1 fragment_not_received => 1);
for ftiio_command_type wuse(
reset => 8,
store =>1,
retriseve => 2);
end Inm_Out_Defe;
{
: e e : 3
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- Rda-to-Silicon Project ‘ -

- University of Utah: -

- BDoD Internet Protocoi INN_CUT submoduie -

- Rda code for the auxiiiary package named: -

- Memory_ Module -

- Vereion of November 1, 1982 --

with Inm_Out_Oefs, In_Out_Srv_Defe;
use Inm_Dut _Defs, In_Dut_Srv_0Defs;

package Nemory_Moduie is

~~ Function:
- Represents the Memory mcdule that hoids to-be-sent datagrams
- as Weli ae initiaiization parametere needed by INN_DUT.

task Memory is

~~- Function:

- Responds to Request entry caii to either receive x-sized address

- bytes or send octets of information from the memory moduie to uhich
- it hae accees. This task is & pure server, performing & memory

=t function.

entry Request(

requeet_type_formai: memory_request_type;
-- Load_addrees or receive _datum_octet.
chunk_of_addrees_formai: chunk _of_address_type; .

~-- Don’t cars When request_type_formai
== receive_datum_octet.

octet_foraais out octet_type);
~- Don't care when iocad_address.

-- Function:

- When requeet_type_formaj ie receive_datum_octet, this entry copleg
- an octet of information from & refersnced iocation in its

- accessibie memory, wWrites it into the octet_formai parameter,

- and then increments that reference.
T - Hhen requesi_type_formal ie ioad_address, this entry
-- “pursues conetruction® cf a memory address by “taking in"

- the x-sized chunk of b:.s suppiied by the firet argument.
- The vaiuez input for the second or third parametere are
- “don’t cares”, when the first argument is, respectiveiy,
- receive_datum_octet or ioad_address.

end Hemory;

end Nemory_Noduie;
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- Ada-to-Silicon Project -

- University of Utah: -
:: Dol Internet Proto?ol INN_OUT submoduie ::
:: Ada code for the package named: ::
= Fifo_ M odule ==
i :: Version of November 1, 1882 ::

with In_Out_Srv_0Oefs, Inm_Out_Oefs;
use In_0Out_Srv_Defs, Inm_Out_Defs;
package Fifo_Noduie im

task Fifo is

-- Function:
-- Server task oniy; issues no caiis.

entry Fifo_reqt(
cowmand_formai: fifo_command_type;
octet_formai: octet_type);

== Function:
- This entry accepts the foilonwing command values:

- reset: resets the FIFO B
- store: stores an octet in the FIFO
- retrieve: retrisves an octet from the FIFO

end Fifo;

end Fifo_MNodule;

-
i
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- Ada-to-Slllcon Projsct ' -

-- Univsrsity of Utah: -

- DoD Internet Protocol INHM_OUT submoduls -

- Ada cods for ths auxlllary packags namsd: -

== Local_Net_ Module =

- Version of November 1, 1982 -

with Inm_0Out_Osfg;
use Inm_Out_Defs;
package Local_Net_Moduls is

task Local_Net is

-- Functlon:
-- This task rsprsssnts ths local net module, which can rscsive

- and ~sturn rsEponsss.

entry Out_rsq(command_formal : local_nst_command_typs;
rssponss_formal: out local_nst_responss_typs);

~- Functilon:
- This sntry rsclevss a value cf command_formal from ths Inm_Out task

- and passss back a rssult through rssponss_formal.
- Command valuss ars currsntly limitsd to only ons valus:
- rscelve_fragment.

end Local_Net;

end Local_Nst_Module;

DU e e — -
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- Rda-to-Siiicon Project -

-- University of Utah: --

- DoD Internet Protocol INM_DUT submoduie -

- Ada code for the main submoduie package named: - '

- Inm_. Out_ Module -

-- Version of November 1, 1982 —=

with Nemory_MNoduie,
Inm_Out_Defs,
Inm_In_DOut_Defs,
In_Dut_Srv_Defs,
Unchecked_conversion;

package Inm_Dut_MNodule is

-- Function:

-- This package contains task Inm_Dut and an auxiilary procedures named
-- Do_send. The task accepts commands from the SERVER moduile and acts
-- to forward datagrams to the LOCAL NET modulies.

use Memory_Moduie, Inm_Dut_Defs, Inm_In_Out_Defs, In_Dut_Srv_Defs;
-- Instances of Unchecked_conversion:

function Convert_tuosome_array_to_record
-= Used by Read_inheader.
is
new Unchecked_conversion(
source = > octet_buffer_type(8 .. 1);

target => tuo_octet_record);

function Convert_tuosome_srray_to_integer
-- Used by Read_in_header.
is
new Unchecked_conversion(
source = octet_buffer_type(8 .. 1);
target => bitlé);
-- Used by Read_in_header.

function Convert_tuo_octet_record_to_integer
== Used in Do_send.
is
new Unchecked_conversion(
source = > two_octet_record;

target => bitl6);

function Convert_integer_to_tuo_octet _record
-= Used in Do_send.

in
new Unchecked_conversion(
source => bitlsb,
target => tuo_octet_record);

function Convert_srv_command_to_chunk_of_address
-=- Used by var~ious.
is
new Unchecked_conversion(
gsource = > srv_command; "
target = > chunk_of_address_type);

R PR LY . — R i - e
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-- Renamed task entiy

procedure NHemory_r 0y .act

request _type_{. e memory_requeat_type;
chunk _o f_addresn (.. aal: chunk _of_addrese _type;
octat_formal: out octet_type)

renames MHemory.Requaet;

-- Embedded task: tha "maln shou"

- This ie the principal taek of INM_OUT.

-- It Issues calle on the Go entry of Read_Init_parametere and on
-- Out_req entriee In MNEMORY, FIFO and Lmn_Out

- a0 uell as Out_reeet In FIFO.

entry Srv_req(
eerver_command_datum: erv_command;
rasponea_to_server: out out_respones);
-~ Functlon:
-- Thle entry recelvee commande from INMN_SRV module and
-— paseses back resulte through the parameter response_to_eerver.

end Inm_Out;
-- Embedded taek: an "auxillary ehou"

task Read_init_parametere is

entry Go( .
Inlt_num_formal: Integer_range 8 .. 7;
reaponse: out out_responee); g

-- Function:
- Gete INlt_num address chunke from INN_SRV and ehipe them over to
-- the the assoclated Memory module, forming the base addraas of the
-- etorage’ block contalning the Initiallzation parametere; then

-- gete the Initlallzation parametere from the Memory modula.

- Sete out_reeponea to eithar send_ok I|f successful or to

- bad_erv_command if uneucceeaful. (Can be uneucceesful |f required
- toes table eize exceede available local space.)

entry Srv_req(
gerver_command_datum: erv_command;
responese_to_server:t out out_responee);
-- Functlon:
- Thies entry receivee commande from the INM_SRV module.
- Note that taex Inm_Out has an Identical entry.

end Raad_inlt_parametars;

-- Embeddad taek: another "auxiilary ahou"
task Tranelate_TO0S_Taek is
-~ Functlon:
-- This pure aerver task executaa concurrentity wlith Inm_Out when
- performing a requasted lookup in a globaily accesslble typa_of_aervica
-- transistion tabie to datarmina, yaa or naa, wuhathar thare is a

- locul-net typa-of-service corresponding to the glvan type-of-aarvice.
- It yea, the matchad local net toa vaiua la Indlicated In tha form of
~— a returnad Index Into tha toe_tabie. Send_fragmant wili then uaa ’

-- thia value later to fleh out the local nat toa valua to ahip to tha
-- Flfo module. .

- T —_— T W p— Y T W N g .
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entry Bsgin_trensietion(
Inm_toe_byte: bit8);

-~ Functions

- This entry accspts the pasesd (from INH_SRV) TOS byte.

-- Ths rsndszvous is immediately broken to psrmit ths caliing task

-—— to rssums computetion. In ths "stetsesnt esqusi” for this entry’s
- eccept stetsment, ths ssrvsr tusk psrforms ths rsquired iookup.

- For a succsssful compietion of ths seerch, the

- succsssful_trensietion fleg is sst to trus, othsrulss ths fleg

- is est to faleo.

entry Send_rssult(
succsssful _translietion: out boolsan;

tos_indsx: out integer
range 1 .. max_tos_tebis_elzs);

-= Function:
- Sends back ths rssult of the Immsdia‘sly prscsding Bsgin_tranelation

- sntry cell, If suocessful_trensietion Is trus, thsn tos_indsx
- rsferances ths tos_tabie siemsnt contelining ths corrssponding
- iocal nst tos valus.

end Trensiats_T0S_Task;

-= Variabls declerations:

last_result: out_rssponss := sent_okj

time_out_in_miiiissconds: integsr range 1 .. 2ssl6 - 1;
-- Computabls from
-= inm_time_out (ses bslow)
-= in procsdurs
-= Rsad_init_peramstsre.
-= Rctuelly wWs may not
-- computs it eftsr ali.

jocel_net_tos_index: intsger range 1 .. mex_tos_table_sizs;
-= Velue rscsivsd from call
-= from Rsad_in_heedsr oOn
-— Transiate_TOS_task.

--Verlebiss to hold initiaiization peramstsr veluss:

inm_mex_packet: tuo_octst_record;
-- Lorgsst sizs peckst
-=- for ths locai nst.
-~ Rspressntsd ae a pair of
-- octets and aieo ueed
-- a0 & 16-bit Integsr after
-- appiying Unchscksd_
-=- convereion.

Inm_addrsss_Isngth: octst_typs;
-~ Ussd in Rsad_in_headsr.

Ine_time_out: tuo_octst_rscord;
-- Haiting time at LN.
-- Rsprsesntsd ae a pair of
-- octete and aieo vead
-- a0 8 16-bit integer after
-- appiylng Unchscked_
-=- convsrsion.

ack_typs: octst_typs;
-- Early/lets.

Iocll_not_tgp._of_llrvlcl_tlbl._rau_olzs: octst_type;
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nunb.r_of_loclI-not_tgpot_of_sorvlco: octet _type)
dont_care_octet: octet_type;

—- Used as an Actual parameter for Namory.Requast antry
—- calls when addrass chunks are belng moved to the
-- memory module.
-- Arrays
tos_table: octet_buffar_type(8 .. max_tos_table_slze - 1)
—=- The slze of this tabla
-- depends on tha storage
-- space avallable In tha

-= NHiscellansous constants:

dont_care_X_datum: constant chunk_of_address_type : = 8
-~ Usad as an actual parameter for Hemory.Request entry
—- calls whan no addrass chunks are actually movad.
—- Harduare Implementer may use Indetarminate value.

end Inm_Out_Hodule;

package body Inm_Out_Rodule is

procedure Do_send

~-= Functlon:

- This procedure sends an internet datagram In the following gteps?
- 1) Reads the Internet header.

-- 2) Translates Internet TOS byte to a local net TOS.

- 3) Constructs fragments and sends them to the local net.

- The optlon list for all but the first fragment are

- compacted, and the checksum for each fragment Is computed.

-- Rny encountered error terminates transmission of the datagram

- Wwith an appropriate value assigned to the (global) varlable, namad
- last_result.

is separatle;

iask body Inm_Out
is separate;

task body Transiate_TOS_task
is separate;

task Read_Inlt_parameters
iz separate;

end Inm_Out_Module,
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:: Rda-to-3illcon Project ::
-- Univarelty of Utah: --
:-- DoD Internet Protocol INN_OUT eubmodule ::
:: Rda code for the body of the princlpal task named: ::
:: Inm._ Out A --
:: Varslion of November 1, 1982 --:

sepurate (Inm_Out_NHodule)
task body Inm_0Out

-~ Functlon:

- This Is the princlpal task of INN_OUT.

- It leeuse calis on the Go entry of Read_Inlt_parametere and on
- Out_req entrise In MENORY, FIFO and Lmn_Out

- ae uell ae Out_reeet In FIFO.

is
icommand: erv_command;
Inlt_num: Integer range & .. 7;
dont_care_octet: octet_type; -~ Used ae a dummy.
-- Harduare Inplementoie
~= use an indeterminate
~= value. .
begin

-- Haln command loop
loop

~- Cot next command from the server.
accept Srv_req(

esrver_command_datum: erv_command;
reeponee_to_eerver: out out_reepones)
do
Icommand 1= eerver_command datum;
if Jcommand = test then -~ Report laet result.
respones_to_server 1= laet_result;
end if;
end Srv_regq; -- Break rendezvous.

-- Now hondle non-teet erv_commands.
case |lcommand im
when Inft_t | init 2 in1e_3 | inie_s =>
case Icomwmand is
when inlt_1 =>
Inlt_nun 1= 1;
when Init 2 =>
Inlt_num 1= 2;
when Init_3 =>
inlt_num 1= 3;
when Init_4 =>
Inlt_num 1= 4;
when others = >
null;
end case;

-~ Start up task Read_!nlt_parameters.
Read_Init_parametere.Go(
Inlt_num_formal =D> init_nun,
reeponse =D last_result);

~- End of Inlt command proceesing. It unsuccasefui, the reeponea
== to the SRY modulo wili be bad_erv_command. . i

Tt i
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when eend => -- Get and put (move) all but laet
4 -= addr_chunk for the audrees
-=- of the datagram from the
-~ SRV to the Hemory modula,

-- Note: In the follouing two loope we have a giltch In that we

- are matching a server_command_datum to

-— type chunk _of _addreae_formal. Looke |Ike we naed to
- apply Unchacked_converelon. Thle problem aleo arlaaa
- In earller vereione of thle taak,

for Index im 1 .. Inlt_num - 1

' loop
accept Srv_req(
eserver _command_datum: erv_command;
reeponees_to_server: out vut_reeponea)
do

lcommand 1= eerver_command_datum;
Memory_request (
requeet_type_formal > lvad_addreses,
chunk _of_address_forral = > server_command_datunm,
octet_foraal > dont_care_octet);
end Srv_regq;
end loop;

-- Laet addr_chunk of datagrem addreee le a epecial caee, dapending
-- on ack_type In effect.

! accept Srv_req(
. server_command_datum: erv_cokmand;
I reesponee_to_eerver: out out_response)

do
i Hemory_requeet( :
' requeet _type_formal => joad_addrese,
! chunk_of_address_formal = > eerver_command_datunm,
' octet_formal => dont_care_octet); '
i

-- Late_ack case, whare ery is held up till In consumes detagram.
if ack_type = late_ack then
Do_send; -- Do all remaining proceeesing for

-- sending thia datagram.
end if;
end Srv_req;

) --- Now esarly_ack case, uhere oerv |le not held up.
if ack_tyne = eariy_acx then

Do_eend; -- Do ail remeining proceeelng for
-- aending thie datagrenm.
end if;

whcn others = >
last_rasult 3= bad_srv_comnmand;
I end case;
‘ end loop;

end Inm_QOut; -- end of taek body
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-- Ada-to-Siiicon Project
- University of Utah:
- DoD Internet Protocoi INN_OUT submoduie -
:: Ada code for the body of the auxiliiary task named: ::
-- Read_ Init_ Parameters (used by Inm_Out) .
:: Version of November 1, 1982 ::

scparate (Inm_Out_MNodule)
task body Read_Init_Parameters is

-- Accesseod globais:

- nunbor_of_loclI_not_tgpos_of_sorvlco: octet_type
- Iocnl_not_tgpa_of_sorvlco_tabIs_rou_slzo: octet_type
-=- tos_tabie: octet_buffer_type

~- Renamed task entry:

—— The package Memory_Nodule containing the task Hemory hoids
—— to-be-sent datagrams as wWe.l as initiaiization parameters
~-- needed by INH_OUT.

procedure Hemory_request( . :
request_type_formal: nemory_request_type; )
—- Load_address or recelve_datum_octet.
chunk_of_addrecs_formai: chunk_of_address_type;
—- Don’'t care when request_type_formai
-- receive_datum_octet. 4
octet_formai: out octat_type) 4

—-- Don’t care when ioad_address.
renames Nemory.Request;

-- Local varlable deciaration:

-~ The foilowing variabie Is commented out. 1t appeared oniy in the

—— *hish-levei® used to read in the TOS table. See beiowu.

-— nu ber_of_tos_tabie_octets: integer range 2 .. max_tos_tabie_size -~ 1;

octet_reglister: octet_type;
begin
loop
accept Go (
init_num_formal: bité; -- For Carter's paper
-- oniys otheruime bit3
response: out out_response)
do
response : = sent_okj -- Rlso means iInit_ok.

—-- Get from the server aii of the addr_chunks needed to form the base
-~ address Iin memory that holds the initialization parameters and

-- sends these chunks to the Memory woduie.

for index im 1 .. init_num_formal

loop
accept Srv_reql -- Get next addrenms
== chunk from the
~= Server Hodule.
server_command_datum: srv_command;
response_to_sarver:s out out_response)
do
Memory_request( == Put chunk out to the
~-- Hemory moduie.
f
= e »” '7*".-1 a8 tOUT . e E SEE S e o et o r o
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requeat_type_formali => load_addieas,
chunk _of_address_formal =>
Convert_srv_command_to_chunk_of_addresa
(aerver_command_datum),
octet_formal => dont_care_octet);
end Srv_req;
end loop;

—- Gut the 6 Individual Initlaiization parameters (contalned in the
—- next 8 octets recelved) from the Hemory Hoduie.

for Index inl .. 8

loop

Hemory_request(
request_type_formal => receive_datum_octet,
chunk_o f_sddress_forxal => dont_care_X_datum,
octet_formal => octet_register);

case Index is

when 1 => Inm_max_packet.lo 1= octet_reglatery
when 2 => Inm_max_pecket.hl 1= octet_reglister;
when 3 => Inmn_address_iength 1= octet_reglister;
when 4 => Inn_tire_out.lo 1= octet_reglster;
when § => Inm_time_out.hl 1= octet_register;
when 6 = > ack_type 1= octet_register;
when 7 =5 locll_n.t_tgpo_of_sorvIco_ubl._rou_slza
1= octet_register;
when 8 = > number_of_local_net_types of_service
1.2 octet_reglister;
end case;
end loop;
-- Convert the local net timeout into millliseconds.?
—— time_out_In_mllllsaconds 1= Inm_time_out / 1888.8;

—= Laft-hand side varlable declared
—- In Inn_Dut_Nodule. Value is used
—- later in Do_send procedure.

—— Note: Davis never did thia in

—- his design. la this step nesded?
—= No! 4e don’t need this atep

-=- since the quotlient can be

—- approximated by a div by 24218
== In the svent We need to

-- represant miillseconds.

—- Read in typs of service translation table.

-- The follonling code In comments Is repieced belou by a

- “jonsr-levei” verslion that closeiy refiecta the harduare
- Implementation chosen In which we eilminate the need for
- for a muitiplier.

number_of_tos_tabie_octets = Iocnl_nct_tgps_of_scrvlco_tlblo_rou_nlzo
* nulbnr_of_loclI_ntt_tgp.s_of_sorvlco;

—- Check to see |f required table size exceeds maximum

if number_of_tos_tzble_octets > max_tos_iable_slze ihen
responae 1= bad_srv_commands
returng

end if3

for index in 1 .. number_of_tos_tabie_octets
ioop

Memory_request(
request_type_formai
chunk _of_address_formali
octet_formai

end j3oo0p;

> receive_datum _octet,
> dont_care_X_datum,
> tos_tabie(index));
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deelare

rou_number: Integer range € .. nu

nbor_of_local_nut__tgpo:_of eervice;
col_number: integer range & ..

ioca I_not_tgp._of_norvlco_nb ie_rou_s ize;

index: integer range &

.o nulbor_of_locaI_not_tgpoo_of eervice
* locnl_nn__tgpo_ol_urvlco_ubio_rou_slzo

1= 8
begin
roW_number 1= g;
loop == Outer ioop reads aii rous of TOS tabie.
coi_numbar := g
loop == Inner ioop reads in one row of TOS tabie.
Honorg_roquott(
request_type_formal => rocolvu_dltun_ocn!,
chunk_of_addrese_formai => dont_cnro_x_dnun,
octet_formai => tos_tabie(index));

cs!_number 1= col_number + 1
exit when coi_numbar = loc.l__nn__tgpu_of_nrvlco_ublo_r-ou_oIzo;
index 1= index + 1l;
if iIndex > max_tos_table_size then

rasponse ::: bad_sr-v_eonuand;

return; -- Exit the currant accept statement.
end if;

end loop; ~= End Inner 100p.

rou_numbar := rou_number + 1; '
: exit when rou_numbar = nunbor_of_local_nn_typot_o f_service;
. end loop; -~ End outer ioop. .
' end; -- End daclare bilock.
' end Go; -=- End of init processing.

end loop; == End of outer-most (inifinite)
-- ioop. !
end Rtad_lnlt_Par:lnonro;
1
(
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:: Ada-to-Slilcon Project ' ::

- University of Utah: -

:: Do0 Internet Protocol INMN_OUT submodule ::

:: Ada code for the body of the auxllilary task named: ::

:: Translate- TOS_ Task (used by Read_in_header) -:-

:: Verslion of November 1, 1982 ::

- - - - o - - - - e e

separate(Inm_Out_Rodule)
task body Transiate_TOS_Task

pt |

-~ Local variable declarations:

Index: Integer range 8 .. max_tos_table_size - 1
local_tos_byte: blt8;
SUCCeSS? boolean;
begin

loop

accept Begin_transiation(inm_tos_byte: bit8)

do

local_tos_byte := Inm_tos_byte;
end Begin_transiation; -~ Break rendezvous.

-- Search for the INA_TOS byte In the T0S transiation table.

success : = false; -~ Initialize for search.
Index := 8;
declare
rosw_number: Integer range 8 .. number_of_local_net_types_of_service -1
1= 8;

- The value of
-- number_of_local_net_types_of_
-- service Is dynamically defined
-= In previous actlon of the
-~ Read_Init_Parameters task.
begin
while rou_number < number_of_local_net_types_of_service
loop
—- Test for the local_tos_byte In the TOS transiation table.
if tos_table(index) = local_tos_byte then

Index := Index + 1; -- Index nou points at
~-=- local net tos.
success (= true;
exit;
else
Index := Index + local_net_type_of_service_table_row_slize;
end if;
rou_number 1= row_number + 1;
end loop;
end; End of declare block.

-- End of sequel for preceding accept statement.

accept Send _result(
sucress ful_transl.tion: out boolean;
tos_Index: out Integer
range 1 .. max_tos_table_slze)
-- tos_Index value Is sent to the
-- global named "local_new_tos_Iindex"
-- for use by Send_fragment, '
do
succassful_translation 1 = success;
tos_index t= Index;

P @
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end Send_result;

end loop;

end Transtate TOS_Task;
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Ada-to-Sitlicon Project
Unlverelty of Utah:
DoD Internat Protocol INN_DUT aubmodula

Ada code for the body of the procedure:

-- Do_ send -
:: Verelon of November 1, 1882 ::

with Tnm_In but Defe, Inmut_oete; -

use Inm_In_Dut_Defe, Inm_Dut_Defe;

separate(Inm_Dut_Module)

procedure Do_send is
-= Functlon:

This procedurs essnde an Internet datagram In the following ataps:

1) Gets the Internet header from Hemory_Module.

2) Determinee by entry calle to Translate _TDS_Task if the

the Internet TDS byte correeponda to a valld local nat TDS.

Constructa fragmenta and eends them to the local net.
The optlion llat for all but the flrat fragment are
compacted and the checkeum for each fragment ie computed.

3)

Ainy encountered error }aﬁllnaloo tranemieeslon of the datagram
with an appropriate (explanatory) value aesligned to the (giobal)
variable, named last_result, declared In the Inm_Dut_Hodula.

Accesaed globale:s
uneuppor ted_toe:
bad_header:
dont_fragment _error:

out_reeponae;
out _responseg
out_raspones;

Subtype declaration:

max_inm_addreesa_elze: constant := 2; -- Slza In octata.

subtype Inm_addreese_buffer_type is
octat_buffer_type(8..max_Inm_addrase_aiza-1);
varlablee:

-= Declarationa of local

Inm_addreese_buffers
header_buffer:

haader_octet_array:

~- Need to
~= header_octet_array.

header_length:

eegment _length:

Inesrt here addrese claueae

Inm_addreea_buffer_typas
header _nouffar_typag
-- Haader racord.

header_octet _buffer_typaj

-~ Dctet array used to etore haader.
-- In a harduare limplementation, thia
-~ array can be tha aame aa the

-=- haader _buffer.

for both haadar_buffar and

header_iength_type;s
-~ Haader aize In octeta.
integer range segment_lok_addreea ..
Z aegmant_high_addrasa;
-- Length of eegmant part of datagram
In octete.
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good_heeder _resuit:
ok_tos_transietion:

ok_fragment_transmission:
second_fragsent:

more_fregments:

fregment_length:

current _fragment_offset:

fregment_ssgment_length:

dotagron_totol_longtha

checksum:
checksum_uith_options:

-- Constants:

fragment_blt_true:

do_not_fragment_true:
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booiean) -- Result of the read_in_header caii,.
booieen) -=- Result of the tos_transiation.
booisen) -- Resuit of the Send_fragment call.
booiean) -~ R fieg that Indicates If the

booiean -

current fragment Is the second
fragment of the current detagram,
A fleg thet indicetes if there are
mors fregments to be formed.

integsr range 21 ..

integer range 8

integer range 1

Convert_tuo_octet_record_to_integer
Cinm_mex_pecket);

Used to indizete ths current

fragment’s jungth,

.o 2 8% 16 - 1

Indicetes the current fragssnt’s

offset into the overali data

segment.

Convert_tuo_octet_record_to_integer
(inn_max_pecket) - 28,

Used to indicate the length of the

current fregment’s deta pert.

intsgsr range 21 .. 2 &% 16 - 1,

Used to seve the totai length of
ths current datagram.

tuo_octet_record)
tuo_octet_record;

constant Integer

constant integer

== Local procsdures end functlons:

procedure Reed_In_heeder(

good_heeder: out booilean)

-= Function:

- This procedure first reads in the
iocal net address buffer and then reeds in the

-- the datagram into a
- datagram header octet by octet

Chscksum values ere dsveiopad

in these auxiliary veriables and
leter inserted into the
hsedsr_buffer prior to copying
the header to ths Flfo module.

1= 1y

Used to set the more_fregments bit
in heeder _buffer.flegs.

1= 2

Used to test If the fiags fielid
indicetes thet no fragmentation

is to occur.

iocel net address of the

into a header buffer. Upon

- successfully cempleting the transfer of the headsr, the fieg
- good_heeder Ix set to true; otheruise it is set to false.

is separate;

procedure Compect_options

-=- Funection:

-- This procedure Is invoked uhen constructing the second fragment.
- The procedure compects the iist of options in the header dy keeping

- only those options that are fiegged to be copied.

T~e header

- length and totai length ere aiso updated.

is separate;

procedure Send_fregment (
date_fregment_size:

e ——————— - ” X -

bitlb;
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successful_fragment_transmisslion: out booiean)
explanation: out out_response)
== Funrtion
-- Tiis procedura puts into the locai net FIFO tha foiiouing -
- 1) local net address - local net addrass for the current fragment
-- 2) local net TOS -~ local net TOS for the current .fragment
-- 3) fragment header
- 4) fragment data - wmhich Is puiled out byte by byte from the Memory

- assoclated uith the INN_SRV module. The size of

-—- the data fragment is pessed as a parameter to this procedura.

-- This procedure, after stuffing the FIFO, wiil do a timed entry call
-- on the local net (the cail must be compieted In the time speclfied
- by a parameter passed dowun from INH_SRV). Upon successful

-- transmission of the contents of the FIFO to the ilocai net, the

- successful_fragment_transmission fiag will be set to true| otherxlise
-- it is sat to faisa. The vailue assigned to "explanaation” confirms

- the success (sent_ok) or provides the reason for fallura.

is geparate;

function Mininun(

first_operand: integer;
second_operand: iInteger)
return Integer
is
== Function:
-- This function takes 2 operands and returns the minimum of the
- opsrands. . . .
begin :

if first_operand > second_operand then
return second_operand;
else
return first_operand;
end if;
end Rinimum;

e ——— Body of Oo_send begins here. e~ceccccicceccaca-- —————— N el

Read_in_header(good_header => good_header_result))

if not good_heeder_resuit then
last_result 1= bad_header)

return;
end if

if not (Convert_tuo_octet_record_to_integer(
header_buffer.total_length) >
Convart_two_cctet_record_to_intager(
inm_max_packet) ) then

——————————— Begin “"single packat® case.

== Transfar checksum_uwith_options, shose value was computed
-~ by Read_in_header, into the proper s!ot In the haeader_buffer.
header_buffer.header_checksum 1= checksunx_itith_options)

Sand_fragmant(
data_fragment_size => segmant_langth,
successful_fragmant_transmission = > ok_fragment_transmission,
expianation => last_resuit))

~m—m—emeooo End "single packet” case.
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—rmmmm—————— Begin "multiple packet"™ (two or more fragments) case.

-~ Fragment the datagram.
if header_buffer.flags = do_not_fragment_true then
! last_reault : = dont_{fragment_error;

return;
end if;

-= Initlallze fragmantation varlables.

current_fragment_of fset 1= 83

second_fregment 1= false;

more_fragments 1= true;

ok_fragmant _transmisslion 3= true;

datagram_total_length :1= Convert_trko_octet _record_to_Integer

(header_buffer.total_length);

-- Back out octet contalning old flags from the checksunm.
checksum_ulth_optlions.lo := checksum_nlth_optlions.lo
xor header_octet_array(6);

-~ Set more fragments flag In header_buffer.
header_buffer.flags t= fragment_blit_true;

-- Update checksum with octet contalning new flags value.
checksum_sulth_optlions.lo : = checksum_nlth_optlons. lo
xor header_octet_array(B);

while more_fragments and ok_fragment_transmisslion
loop
if second_fragment then
Compact_optlions;
second_fragment 1= false;
end if; , 5

fragment_length := Ninimum(
firat_operand => datagram_total_length
ascend_operand = >
Convert_tuo_octet_buffer_to_intager
(Inm_max_packet) );
fragment_segrment_length : = fragment_length - header_length;

== Insert new total length Into the header and updata checksunm.
-= First back out octets contalining total_length from the checksunm.
checksum_ulth_optlions t= checksum_uith_options

xor header buffer.total_langth;

header_buffer.total_length := Convert_Integer_to_tuo_octet_record
(fragment_length);

-- Now updata chacksum ulth octeta contalnng naw total_length.
checksum_nith_optlions :t= checksum_ulth _optliona
xor header_buffar.total_langth;

-- Test to see |f we are sending out tha laat fragmant.
if current_fragrent_offset + fragment_segment_langth =

ze,ment_length then
-~ If & < conditlion, then we

~= then we stlll have another
-=- fragment to transfer.

-=- We should not get a > value
-=- beccavae tha laat fragmant Is
~~ computed to contaln the

== the remaining octeta of tha
-~ data aagmant.

~-= Clear more fragmanta blit and adjust chacksum aa well.
== First back out octat contalning old flaga from tha chacksum.

checksum_ul th_optiona.lo 3= cherksum ulth_optiona.lo ]
xor header_octet_array(6);




ouvvu

Ada Specifications for the Dod Internet Protocok:
The INM_ OUT Submodule  ReportNo. 1 page 43

header_buffer.flags := 8;

-~ Nouw update chackeum Wlith octet containing new flage value.
checksum_ulth_optione.lo 1= checkeum_uith_optlione.lo
xor header _octet_array(6);

end if;

-= Ineert a neu fragment offset Into the header and aleo adjuet checkeunm.

~~ Flret back out octets contalning fragment offeet from the checkeunm.

checkeum_xlth_optlione := checkeum_ulth_optlions
xor Convert_tuosome_array_to_record(

header_octet_array(é .. 7) );

header_buffer.fragment _offeet 1= current_fragment_offeet;

-- Nouw update checkeum fleld in header_buffer wlth octete updated for

-= neu fragment offset.
header_buffer.header_checkeum := checkeum_ulth_optione
xor Convert_tuoeome_array_to _record(

header_octet_array(8 .. 7) );

Send_fragment (

data_fragment_eiza => eegment_length,
succeeeful_fragment_tranemieelon = > ok_fragment_tranemiselon,
explanation => last_reeuit);

-- Set up parametere for the next time through the loop.
if current_fragment_offeet = 8 then

second_fragment := true;
end if; : .

current_fragmant_offeet : =
fragment_esegment_length
+ current_fragment_offeet;

if not (current_fragment_offeet < eegment_length) then

more_fragmente : = fales;
end if;

B ettt End "multiple packet” case.

end Do_eend;
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:: Ade-to-Siilcon Project ::

-- University of Utahs -

:: DoD Interne: Protocol INN_OUT submoduie ::

:: Ada code for the body of the procedure: ::

:: Read.. in_ header (ceiled by Do_send) -:—

:: Version of November 1, 1982 ::
scparate (Ins_0ut_Module.Do_send LT T T

procedure Read_in_hesder
(good_header: out boolean)

-~ Function: ‘

- This procedure first reads In the locel ne¢ address of the

- the dateyram Into a2 local net eddress buffer end then reeds In the

-- detegrem heeder octet by octet into e heeder buffar. Upon

- successfuliy completing the trarsfer of the header the flag

- good_header is set to true otherwlise It |s set to feise.

-- In the course of reeding in the header, It makes a peir of entry calls

- transiate_tos_tesk to obtain the local net type of service, |f any

-- and aiso computes the checksums (one without and one ulith the options

- component. These checksums are “eccumuleted" iIn tuo-octet records

- declared (and cieared) In Do_send and named cNycksum eond

- chocksul_ulth_optlons, respectively. B
is .

-- Constants: .
minimum_header_iength: constant integer := 28;
high_é_blts constant : = 248; -- Upper 4-bit mask for en octet.

:
high_3_bits + constant : = 224; -- Upper 3-bit mask for en octet.
low_S_bits : constant : = 31; -- Low S-bit mask for en octet.
low_4_bits : constant : = {5; -- Low 4-bit mask for en octet.
high_octet_byte t+ constant : = 8; -- High byte of two_octet_buffer,
low_octet_byte t constant : = 1; -- Low byte of tuo_octet_buffer,
-- Accessed giobeis:
== checksum: tuo_octet_record; -- Declared in Do_send;
== checksum_uith_options: tuo_octet_record;

-~ local_net_tos_index: integer renge 1 .. mex_tos_teble_size;

-- Loce!l variabie declarations:

cctet t octet_type;
tuo_octets t octet_buffer_type(e .. 1);

-- Renemed procedures end functions:

procedure Nemory_request (

request_type_formel: memory_request_type;
chunk_of_eddress_formel: chunk_of_oddro:s_tgpo;
ontet_formel: out octet_type)

renames Hemory.Request;

function Nesk (
number_to_be_masked_formal: Intager;
mask_forme|: Integer) return integer .
renames Inm_In_Out_Defs.MNask;

== Local functlion definlitlion:

function Even(

e e
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operand: Intager)
return boolean
is
begin
if operand rem 2 = @ then
return true;
else
return falee;
end if;
end Even;

begin

good_header := truu;

page 45

~- Get the local net addrese. By convention, thle fiald aluaye precedes

-- the actual datagram to be eent.

for Index in 8 .. Inm_addrese_length - 1}

loop

Hemory_request(

requeest_type_formal => recelve_datum_ociet,
chunk_of_addreee_formal = > dont_care_X_datum,
octet_formal =>

end loop;

-- Get the header’s version number and length.

Hemory_requeet
requeet_type_formal
chunk_of_addreee_formal
octet_formal

> recelve_datum_octet,
> dont_care_X_datunm,
> octet);

header_buffer.verslion 1= maek

{number_¢o_be_masked_formal =

maek_fciemal =
headsr_bufter.IHL t= maek

(number _to_be_masked_formal =

mask_formal =

-=- Check the header verslion number.
if mnot (header_buffar.verslon = 4) then
good_header : = falee;

return;

elsif header_buffer.IHL a 4 < wminimum_header_length then
good_header := falea;

return;
end if;

-- Update octets of tha tuo checkeums.
checkeum. lo 1= octet Xor checkeum.lo;
checksua_with_optione.lo := octet Xor chsckeum.lo;

-~ Got the type of service octet.

fHemory_request(
request_typa_formal => recelve_datum_oc tet,
chunk_of_addrese_formal = > dont_cara_X_datum,

Inm_addreee _buffar{index));

>
>
>
>

°
h

ctet,
on_4_blte);

ctet,
Igh_4_blts);

octet_formal => header_buftar.type_of_sarvica);

—— He make the first entry call on traneiate_toe_task.

Trlnollto_TOS_Tllk.Bogln_trln:lltIon(holdor-buffor.tgpo_of_oarvlco);

-- Get the total length half uord (2 octets).
for Index in 8..1
loop

Hemory_request(
requast_type_formal > recalva_datum_octat,
chunk _of_addrees_formal > dont_cara_X_datum,
octet_formal => tuo_octete(index));

s e i L i
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end loop;

header_buffsr.totsi_length 3= Convsrt_tuosoms_array_to_racord
(tuo_octets(8..1)),
-~ Computs ths ssgmsnt’s in octsta.,
ssgmsnt_Isngth
1= Convert_twosome_array_to_Intsgsr (tuo_octsts(8..1)) - headsr_length;

Isngth

-~ lpdats the tuo checkeunms.

chscksum t= chscksum XOT
Conv-rt_tuo-on-_lrrlg_to_r:cord(tuo_oct:ts(l..1));
checksum_wKith_optlons xor
Conv:rt_tuolonn_lrrag_to_r.cord(tuo_octotl(l..1));

checksum_wxlth_optione

1 =

-~ Gat ths ldantification half word (2 octsis).
for Index in 8..1
loop

Hemory_rsquest(
rsqusst_typs_formal >
chunk_nf_addrsss_formai > dont_care_X_datunm,
octet_formai > tuo_octsts(indax));
end loop; )

rscslve_datum_octst,

Convsrt_tuosome_ar~ay_to_rscord(
thwo_octets(8..1));

hsader_buféfsr.ldentlfication : =

-~ Update ths two chscksums.
checksum t= chsckeum XOT
Conv:rt_tuo-ol:_lrrlg_to_rlcord(tuo_oct:ts(l..1));

checksum_nith_optlons Xxor
Convsrt_tuo:on:_lrrng_to_rocord(tuo_octltl(l..l));

t =

checksum_xith_options

-~ Gst the flags (3 bite) srd ths fragmsnt offset (13 bite).

for Index in 8..1
loop
Humory_rsqusst(

rsqusst_typs_formal => rscsivs_datum_octst, 4
chunk_of_addrsss_formai = 2> dont_cars_X_datum,
octst_formal => tuo_octsts(indsx));

end loop;

headsr_buffsr.flags t= mask

headsr _buffsr.fregnsnt_ofisst
mask(

numbsr_tr _bs_masked_formal

mask _foranl

(numbsr_to_be_masksd_formal =>
tuo_octets(high_octst_byts),
mask _formal => high_3_blits);

=> tuo_octsts(high_octst_byte),
=> lou_5_bits)

¢ shift8 + two_octsts(lou_nctet_byts);

-- Updats ths two chscksums.
chscksum t =

checlksum

xor

Convsrt_tuoso-s_arrag_to_rlcord(tuo_octltl(l..l));

chscksum_ulth_optlions

checksum_ulth_options

xor

Convert_tuosome_array_to_rscord(tuo_octets(8..1));

~= Gut the tims~-to-llvs octet.
Hsmory_rsquset(
rsqusst_typs_formal =
chunk_of_addrsss_formal =
octst_formal =
-= Updats ths two chscksums.
chscksum. lo

t= checksum.lo

> rscsivs_datum_octst,
> dont_care_X_datum,
> hsader_buffsr.time_to_live);

xor

headsr _buffsr.time_to_lIlve;

chscksum_ulth_optlons.io 3=
hs

-~ Gst ths protocol octet.

e AR e

N e

checksum_unlth_optlions. lo xor

adsr_buffsr.time_to_iivs;
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Memory_requsst(
request_type_formal => receive_datum_octet,
chunk_of_eddress_formel => dont_cere_X_datum,
octet_formei => heeder_buffer.protocoi)

-— Updete ths tuo checksums.
checksum.hl 1= checksum.hi xor
heeder _buffer.protocol;
checksum_ulth_options.hl t= checksum_uith_optlions.hl xor
heeder buffer.protocoli;

—- Got the header checksum heif word (2 octets) and dump It on the fioor.
-= I1t’s not needed.
for Index in 8..1
loop
Hemory_request{
request_type_formal > recelive_datum_octet,
chunk _of_address_formai > dont_care_X_detunm,
octet_formal > tuo_octets{index))j

end loop;

Cet the source and destinetion addresses end the rest of the
heeder buffer which consists of the option octets. For eli octets
pest the tusntieth, update only one checksum. Note: no converelon

routine is needed here.

for index in 12 .. header_iength - 1
loop
Nemory_request{
request_type_formal > recelve_detui_octet,
chunk _of_address_formai > dont_care_X_datum,
octet_formel ‘ > hoodor_bullor.oclol_bullor(Indox))|

if Evsn{indsx) and then Index < 286 then
rhecksum.lo 1= checksum.lo xor
h.ldor_bu!!or.octot_bu!!or(lndox)|
checksum_uith_optlons.lo : = checksum_ulth_options.lo Xor
holdor_bu!fsr.octot_buOOor(Indox)|

elsif Even(index) and them Index >= 28 then
checksum_ulth_options.lo 1= checksum_wuith_optlions.lo xor
hoador_bullor.oclot_buflor(Indox)|

elsif not Even{index) and then index < 28 then
checksum.hl ;= checitsum.hi Xor
heeder _buffer.octet_buffer (Index);
checksum_uith_options.hl = checksum_wuith_optlions.hi xor
holdor_bullor.octol_bullcr(lndox);

else -- not Even{index) end then index >= 28 then
checksum_uith_options.hl 1= checksum_wlth_options.hl xor
holdor_bu!f.r.octot_bu!!or(Indox);

end ify

-- He meke the second entry cali on Trerslate_TO0S_Task.
Transiete_T0S_Task.Send_resuit(
euccessful_trensiation =5 good_header,

tos_index =5 locel_net_tos_index);
Good_heeder is set feise if

transiatlion is unsuccessful,

in which case the vaiue obtained
for iocei_net_tos_index Is

will be ignored.

end loop;

end Reed_in_heseder;
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:: Rda-to-Slilcon Project ::
-- University of Utah: -
:: Do0 Interne: Protocoi INN_DUT eubmodule ::
:: Ada code for the body of the procedure: ::
:: Compact_ options (called by Do_eend) --
l: Varelon of November 1, 1982 ::

separatz(Inm_Out_Nodule.0o_se~d)

procedure Compact_optione

-

-- Functlon:

- Thlie procedure ie invoked when constructing the eecond fragment
- (and only the second fragment) of a datagram.
-- The procedurs compacte the |Ist of optione in the header by keeping

- only those optione that are flagged to be copled. The header length
- and total length are aleo updated ae well ae the checksum. The

- value of checkeum_ulth_optlions le recomputed from from the value of

- checkeunm

<« Ficeesed giobals.

=— checksunm: tuo_octet_racord;
-- checksum_ulth_optlone: tuwo_octet_record; . >

-- Subtype deciaratlion:

subtype Index6_type is Integer range 8 .. 2 23 6 - 1;
-~ Because max header size + 64 octete.

-- Constants:

optlon_offeet: constant integer := 28;
-- Dffeet (In octete)
-~ Indlicat!ng where the
-- optlone |liet begline.
header_jength_ulth_no_optlione: constani integer := 28;
copy_optlon_true: constant integer := 1
-~ Flag value Indicating
-= that the current option is
-- be copled to ail fragments.

-- Local varlable declaratione:

new_header_length: IndexB_type; == In octets.
optlons_lengtht Indexb_type; -- Length of optlione iist.
current_optlon_length: IndexB_tupe; -- Leng’h of a candidata

-- optlon.
leading_cureor: IndexB_type; -~ Indlicatee next optlon

~-=- coneldered for copying.
trallling_cursor: index6_type; ~-= Indicates elot In header

-- to recelve the next
-- copled option.

number _of_pad_octets: Integer rsnge 8 .. 3;
begin

-- Doee thle header has any optlons?
if header_length <= header_length_ulth_no_opticne then
return; -~ There are no options to

end if; -- to "compact”.

-= Inltialize variabies.
optlione_length 1= header_length - header_length_uith_no_optlione;
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leading_cursor 3= 8y
tralliling_cursor 3= 83

-~ Initlalize checksum_uwlth_options from checksum.
checksum_ul th_options := checksum;

-- Begln compacting flagged optlons.

while leading_cursar < optlons_length ~~ We use < rather than <=
~~ to avold scanning the
~~ terminal octet, Wwhich must
~~ and “"end-of-optlions-~iist"
~-=- 0oCts?t.
loop
-~ Is this option represented as a singie or multipls octet?
-- Discriminate by examining the option’s number,
if header_buffer.octet_buffer(
option_offsst + leading_cursor) rem shif{ts < 2 then
current_optlion_length s = i;
else

~~ Get the next optlion octet. It contains the option length as Its
~- value.
current _optlon_length : = header_buffer.octet_buffer(
optlon_offset + 1 + lieading_cursor);
end if;

~~ Determine wuhsther or not this option should be copled.
if Shift_right(
header_buffer.octet_buffer(option_offset + leading_cursor), 7)
= copy_option_true thea . .
for copy_Index in 8 .. current_option_length - 1

loop .
header_buffer.octet_buffer(option_offset +
trailing_cursor 4+ copy_Iindex)
: = header_buffer.octet_buf‘er(option_offset +
Isading_cursor + copy_lndex);
~-=- Upda:e chscksum_nlth_options. Toggle on odd- and even-vaiued
-~ bytes In compacted optlions fleid.
if (tralling_cursor + copy_index) mod 2 = & then
checksum_uwlth_optlons.lo t= checkrum_ulth_options.lo xor
header_buffer.octet_buffer(
optlion_offset +
trailing_cursor + copy_index);
else
checkzum_wlth_optlons.hl : = checksum_ulth_options.hl =xor
header buffer.octet_buffer(
option_ofiset +
tralling_cursor 4 copy_lindex);
end if;
end loop;
~~ Update the tralling_cursor.
tralfling_cursor := trailing_cursor + current_option_length;
end if;

-~ Update the leading_cursor.
ieading_cursor 1= leading_cursor + current_optlon_iength;
end loop;

-~ Pad out the last option kord ulth pad octets (Including the last one,
~= Whirh Is an end-of-ali-options octet) untll we have reached & 32-bit
-~ boundary.

number_of_pad_octets 1= & - (tralling_cursor mod 4);
for copy_index in @ .. number_of_pad_octets -~ 2

loop

~- Insert a “pad” octet (= “p80080881"). j

header_buffer.octet_buffer (option_offset + traillng_cursor + copy_index)
1= 13

Ve v A o N
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~-- Update checksum_ulth_optlions Wwith pad octet (= “300008081").
checksum_ulth_options 1= checksum_ulth_options Xor 1;

end loop;

-~ Nou Insert the iast pad octet.
—- Insert an “"end u2f-all-optlions” octet (= "906080088").
—- Note that the zero value of the end-of-a!l-options octet
-~ wlill not change the value of the current checksum; hence there
-- no update of the checksum for this octet.
headar_buffer.octet_buffer(
optlon_offset + trallling_cursor 4 number_of_pad_octets - 1)
1= 83

new_header_length
1= optlon_offset + tralling_cursor 4+ number_of_pad_octets;

-- Updete the total length flald and the checksum,

-—- First back out octets containing total_length from the checksum.
checksum_ulth_optlons = checksum_muith_optlions xor
Convort_tuo:ono_arrlg_to_rocord(
header_octet_array(2 .. 3));

header_buffer. total_length : = Convort,lntogor_lo_tuo_octot_rocord(
Convort_tuo_oetot_rocord_to_lntogor(
headsr _buffer.total_length)
- heeder_length - new_header_length);

—- Nouw upcate checksum ulth octets containing new total_length.
checksum_ulth_options 1 = checksum_ulth_optlions xor
Convorl_tuo:om._lrrlg_to_rocord(
header_octet_array(2 .. 3));
-- Update the IHL fleld and the checksunm.
-- Back out octet contalning old IHL value from ths checksunm.
checksum_slth_optlons.lo 1= checksum_ulth_optlions.lo
xor headsr_octst_array(8);

header_buffer.IHL 3= Shift_right(neu_hsader_length, 4);

-- Update checksum ulth octet contalning new IHL value.
checksum_ul th_optlons.lo = checksum_wWlth_optlions.lo
xor header_oct-t_array(8);
end Compect_optlions;
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:: Rda-to-Sillcon Project ::
-- University of Utahs -
:: DoD Intsrnst Protocoi INN_OUT submoduls ::
:: Ads code for ths body of ths procsduras ::
:: Send_ fragment (csiied by Do_send) .-.—
:: Verslon of Novseber 1, 1982 ::

with Flfo_Noduls, Locai_Nst_fodules

lepl:ate(!nn_out_ﬂoduI|.Do_|ond)

procedure Send_{ragment (

data_fragmsnt_sizs: bi1tl6;
succsssful_fragmsnt_transmission: out booisang
expianations out out_response)

-- Functlion:

-- This procedure puts into the local nst FIFD ths following -

- 1) iocal net addrass - local nat addrsss for ths currsnt fragmsnt

-- 2) locail net TOS — local nat TCS for the current {ragmsnt

- 3) fragment hsadar

-- () tragmsnt data - uhich Is pul lad out byte by byte from the Hemory
- assoclated with ths INA_SRV moduls. the alzs of

- the data fragmsnt is passed as a parametsr to this procedure.

-- This procedure, sfter stuffing the FIFND, uill do a timed sntry call s
-- on the locail net (the cail must be compiated in ths time specified
-- by a paramstsr passsd doun from INB_SRV). Upon successful

-- transmisslion of ths contsnts of ths FIFD to tha local nst, tha

- auccsssful _tragmsnt_transmission flag ulil be aat to truey otharulae
-- it Is set to taise. Ths value asslgned to "gxplanaation” confirms

-- the succsss (sant_ok) or providss ths rsason for faliure.

—- Rsnamsd task entrless

- o o o

procedure Nsmory_requsst(

rcquctt_tgpc_fornll: nlnorg_roqullt_tqpl;
chunk_of_lddrols_forlal: chunk_of_addrsss_type;
octet_formsis out octst_type)

renames lismory.Rsqusst;

procedure Locai_net_out_req(
command_formais locai_net_command_typeg
rasponss_formals outlocal_nci_recponla_tqpo)
renames Loca {_Net_Noduls.Local_Net.Out_raq;

procedure Fito_reql
command_formals flfo_commard_type;

octst_formal: octst_type)
renames Fito_floduis.Fifo.Flio_req;

-- Local varlable daclarations:

- > O o O O o o

octst_rsgistars octat_types
local_nat_rasponse:l local_net_responsa_typs;
begin

auccaccful_fraglont_tranallaclon 1= truag

—- Reinitiallize ths FIFO.

- —
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Fito_reql
command_formal = > reeest,
octet_formal => dont_cere_octet);

—- Load the FIFO Wwith the fragment’s local net addrees previoueiy
-- gaved In the Irnm_addreee_bufisr,
for Index in 8 .. Inm_addrese_length - 1

loop
Fifo_regt
command_formal => etore,
octet_formal => Inm_addreee_buffer(index));
end loop;

-- Load the FIFO wlith the local net toe.
for Index in local_net_tos_Index ..
Ioeal_not_tgpo_o'_oorvlco_tabI._rou_olz. -1

loop
Fifo_reql
command_formal => aetore,
octet_formal => toe_table(index));
end loop;

-- Load the fragment’e header Into the FIFO.
for Index in 8 .. header_length - 1

loop
Flfo_reqt
commar.d_formai = > etore,
octet_forwmal => header_octet_arraytindex))
end loop;

—— Get tho data fragment from the memory and ioad it Into the FIFO.
for data_index in 8 .. segment_length - 1
loop
Memory_requeet
request_typs_formal
chunk_of_addrese_formal
octet_formal

> recelve_datum_octet,
> dont_care_X_datum,
> octet_reglister);

Fifo_reql
command_formal =2 store,
octet_formai => octet_register);
end loop;

—— Do a timed entry call on the local net Indicating that
—— the FIFO has a fragment uith local net informaticn In It.
select -- Condlitional eeisct.
Loct I _net_out_reql . -~ Hae fragment receivsd?
command_formal =D receive_t{ragment,
respones_formal => local_net_respones)i
or
delay time_out_In_miillesconde; -- Valus wae computsd by
-~ Read_inlt_parameturs
-- The iocal net rendezous has timed out.
explanation 3 = joc2l_net_time_out;
esucceesful_fragment_tranemiesion : = tales;

end select;

—— Test to sse |f the local net recelved ths fragmsnt.

if ouccosofui_'rlgmont_trlnsllooIon -- Local net did not time out.
and then ~- fida "Short-circuit" phrase.

not (local_net_respones = !rlgnont_rocolv.d_ot) then
-~ Locai found something uas urong. .

explanation :t= locai_net_esrror;
succeesfui_¢fragrent_tranemisslion 1= faiss;
end if;
= p. y th
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end Send_fragment;
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